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CS 264: INTRO TO SYSTEMS



WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

• Abstraction is good, but don’t forget reality: 
• Most CS classes emphasize abstraction. Not this one.



• People don’t just write programs in one language for 
one platform anymore. Real projects have lots of parts. 

• Computers are changing: parallelism is much more 
important today than it was in the 90s. 

• Stuff you learn here will be used in security, OS, 
compilers, architecture, IoT, etc.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS
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WHAT IS THIS CLASS GOING TO BE LIKE?



1. Have a gut feeling for what memory is. 
2. Write a few bare metal programs that aren’t constrained 

by an OS. 
3. Understand how the computer runs your program.

MY GOALS FOR YOU



• Weeks 1-3: Hardware Basics 
• Weeks 4-9: Assembly Language Programming 
• Weeks 10-15: C Programming

COURSE OUTLINE



ABSTRACTIONS IN A COMPUTER

Devices
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Logic

Register Transfer Level (RTL)

Instruction Set Architecture

Hypervisor

Operating System

Libraries

Application

This Class



• Video lectures on the course schedule. Watch them on 
your own and take notes. 

• Weekly homework and quizzes on the course schedule.

COURSE WEBSITE: http://comp264.org



• Clarification of questions and activities 
• Questions 
• You may record, but I won’t

LIVE ZOOM SESSIONS



• Lab is a time when you can do your homework (with 
help from TA Jack). 

• Lab sessions will be held Thursdays from 4:30-6PM 
online. (Same Zoom link as class)

LABS



• No partial credit for code that 
doesn’t compile. 

• No extended due dates. 
• Follow stack overflow forum rules: 
• Need to show that you’ve 

attempted the assignment 
before asking for help. 

• Need a specific question.

GRADING

Category Weight

Homework 55%

Participation 10%

Progress 10%

Quizzes & Checkins 25%



• You’re allowed to use Internet as a source and modify 
code you find. 

• Don’t copy-paste code verbatim. 
• We may ask you questions about how your code works.

DOING YOUR OWN WORK



• Each students gets five slop days to use during the 
semester. 

• Slop day allows you to turn in homework up to 24 hrs late. 
• Can’t use more than two slop days on one assignment. 
• Tell Kyle that you’re going to use slop days before the due 

date.

SLOP DAYS



CODING STYLE

1. Every function should have a header explaining what it does. For example: 
/* 
 * memcpy() 
 * 
 * Copies count bytes from src to dest. Returns 
 * the number of bytes copied or a negative number 
 * in case of error. 
 */ 
int memcpy(void *dest, void *src, unsigned int count) { 



1. Every function should have a header explaining what it does.  
2. Functions written in assembly language also need a stack frame diagram. For example: 

; memcpy
;  -------------
; | count       | 2 bytes
;  -------------
; | src         | 2 bytes
;  -------------
; | dest        | 2 bytes
;  -------------
; | Ret Addr    | 2 bytes
;  -------------
; | Caller’s BP | 2 bytes
;  -------------
; Copies count bytes from src to dest. Returns...
memcpy:

CODING STYLE



1. Every function should have a header explaining what it does.  
2. Functions written in assembly language also need a stack frame 

diagram. For example: 
3. Indent properly. 

for(k = 0; k < PAGE_SIZE; k++){
    if(page->next != NULL){
page = page->next;
    }
}

CODING STYLE

NOOOOOO!!!!!!!



1. Every function should have a header explaining what it does.  
2. Functions written in assembly language also need a stack frame diagram. 

For example: 
3. Indent properly. 
4. Comment your code 

for(k = 0; k < PAGE_SIZE; k++){ // Loop thru each page...
    if(page->next != NULL){ // Don’t dereference NULL ptr.
        page = page->next; // Get next element of list
    }
}

CODING STYLE



INTRO…



PROGRAMMER’S MODEL OF X86

CPU Memory



PROGRAMMER’S MODEL OF X86: INSIDE THE CPU
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PROGRAMMER’S MODEL OF X86: INSIDE THE CPU
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mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h
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PROGRAMMER’S MODEL OF X86: INSIDE THE CPU
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mov ax,100h
mov bx,200h
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PROGRAMMER’S MODEL OF X86: INSIDE THE CPU
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mov ax,100h
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THE ONLY THING A COMPUTER KNOWS HOW TO DO 
IS EXECUTE INSTRUCTIONS.

if( a < 5 ) {
  b += a;
  a++;
}

cmp ax,5
jge .not_less_than

add bx,ax

inc ax

.not_less_than:
...



• Arithmetic 

• Add, subtract, multiply, 
divide 

• Logic 

• AND, OR, NOT, XOR 

• Shifts 

• Left shift, right shift, 
rotate, etc.

KINDS OF INSTRUCTIONS

• Control 

• Branch/Jump 

• Procedure calls 

• Memory Accesses 

• Load/store



THE ONLY THING A COMPUTER KNOWS HOW TO DO 
IS EXECUTE INSTRUCTIONS.

Read 
OperandsFetch Decode Execute

Memory 
Access Writeback



• Download and install emu8086. 
• You need Windows: use VMWare if you have a mac. 
• If you need help, come to lab on Thursday. 

• Sign up for GitHub if you don’t have an account. 

• Send me you GitHub username. neil@cs.luc.edu

HOMEWORK


