
https://comp264.org

NEIL KLINGENSMITH

CS 264: INTRO TO SYSTEMS

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

• Abstraction is good, but don’t forget reality:
• Most CS classes emphasize abstraction. Not this one.

• People don’t just write programs in one language for
one platform anymore. Real projects have lots of parts.

• Computers are changing: parallelism is much more
important today than it was in the 90s.

• Stuff you learn here will be used in security, OS,
compilers, architecture, IoT, etc.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

ENIAC, 1946

IBM
 7030, 1961

IBM
 360, 1964

Intel 4004, 1971

Intel 8086, 1978

M
otorola 68000, 1979

IBM
 Personal Computer, 1980

Apple M
acintosh, 1984

M
IPS R2000, 1986

PowerM
ac, 1994

iPhone, 2007

Many/most programs
written in assembly language

Most programs written in
higher level languages

nVidia Tesla SIM
T, 2006

WHAT IS THIS CLASS GOING TO BE LIKE?

1. Have a gut feeling for what memory is.
2. Write a few bare metal programs that aren’t constrained

by an OS.
3. Understand how the computer runs your program.

MY GOALS FOR YOU

• Weeks 1-3: Hardware Basics
• Weeks 4-9: Assembly Language Programming
• Weeks 10-15: C Programming

COURSE OUTLINE

ABSTRACTIONS IN A COMPUTER

Devices

Circuits

Logic

Register Transfer Level (RTL)

Instruction Set Architecture

Hypervisor

Operating System

Libraries

Application

This Class

• Video lectures on the course schedule. Watch them on
your own and take notes.

• Weekly homework and quizzes on the course schedule.

COURSE WEBSITE: http://comp264.org

• Clarification of questions and activities
• Questions
• You may record, but I won’t

LIVE ZOOM SESSIONS

• Lab is a time when you can do your homework (with
help from TA Jack).

• Lab sessions will be held Thursdays from 4:30-6PM
online. (Same Zoom link as class)

LABS

• No partial credit for code that
doesn’t compile.

• No extended due dates.
• Follow stack overflow forum rules:
• Need to show that you’ve

attempted the assignment
before asking for help.

• Need a specific question.

GRADING

Category Weight

Homework 55%

Participation 10%

Progress 10%

Quizzes & Checkins 25%

• You’re allowed to use Internet as a source and modify
code you find.

• Don’t copy-paste code verbatim.
• We may ask you questions about how your code works.

DOING YOUR OWN WORK

• Each students gets five slop days to use during the
semester.

• Slop day allows you to turn in homework up to 24 hrs late.
• Can’t use more than two slop days on one assignment.
• Tell Kyle that you’re going to use slop days before the due

date.

SLOP DAYS

CODING STYLE

1. Every function should have a header explaining what it does. For example:
/*
 * memcpy()
 *
 * Copies count bytes from src to dest. Returns
 * the number of bytes copied or a negative number
 * in case of error.
 */
int memcpy(void *dest, void *src, unsigned int count) {

1. Every function should have a header explaining what it does.
2. Functions written in assembly language also need a stack frame diagram. For example:

; memcpy
; -------------
; | count | 2 bytes
; -------------
; | src | 2 bytes
; -------------
; | dest | 2 bytes
; -------------
; | Ret Addr | 2 bytes
; -------------
; | Caller’s BP | 2 bytes
; -------------
; Copies count bytes from src to dest. Returns...
memcpy:

CODING STYLE

1. Every function should have a header explaining what it does.
2. Functions written in assembly language also need a stack frame

diagram. For example:
3. Indent properly.

for(k = 0; k < PAGE_SIZE; k++){
 if(page->next != NULL){
page = page->next;
 }
}

CODING STYLE

NOOOOOO!!!!!!!

1. Every function should have a header explaining what it does.
2. Functions written in assembly language also need a stack frame diagram.

For example:
3. Indent properly.
4. Comment your code

for(k = 0; k < PAGE_SIZE; k++){ // Loop thru each page...
 if(page->next != NULL){ // Don’t dereference NULL ptr.
 page = page->next; // Get next element of list
 }
}

CODING STYLE

INTRO…

PROGRAMMER’S MODEL OF X86

CPU Memory

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

0100AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

0100

0200

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

0300

0200

AX

BX

CX

DX

SI

DI

BP

SP

IP

Data Registers Address Registers

mov ax,100h
mov bx,200h
add ax,bx
cmp ax,200h

THE ONLY THING A COMPUTER KNOWS HOW TO DO
IS EXECUTE INSTRUCTIONS.

if(a < 5) {
 b += a;
 a++;
}

cmp ax,5
jge .not_less_than

add bx,ax

inc ax

.not_less_than:
...

• Arithmetic

• Add, subtract, multiply,
divide

• Logic

• AND, OR, NOT, XOR

• Shifts

• Left shift, right shift,
rotate, etc.

KINDS OF INSTRUCTIONS

• Control

• Branch/Jump

• Procedure calls

• Memory Accesses

• Load/store

THE ONLY THING A COMPUTER KNOWS HOW TO DO
IS EXECUTE INSTRUCTIONS.

Read
OperandsFetch Decode Execute

Memory
Access Writeback

• Download and install emu8086.
• You need Windows: use VMWare if you have a mac.
• If you need help, come to lab on Thursday.

• Sign up for GitHub if you don’t have an account.

• Send me you GitHub username. neil@cs.luc.edu

HOMEWORK

