NEIL KLINGENSMITH

CS 264:INTROTO SYSTEMS
https://comp264.0rg

LOYOLA

IIIIIIIIIIIIIIIII

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

« Abstraction is good, but don’t forget reality:

« Most CS classes emphasize abstraction. Not this one.

KEEP IN MIND THAT M
SELF-TRUGHT, S0 MY CODE
MAY BE A LITILE. MESSY,

LEMME SEE-
M SURE
TS FINE.

\

.. \MWJOU.

|
THIS 1S LIKE BEING IN
A HOUSE BUILT BYA
CHILD USING NOTHING
BUT A HATCHET AND A
PICTURE OF A HOUSE.

(

IT'S LIKE A SALAD RECIPE
\WRITTEN By A CORPORATE
LAWYER VSING A PHONE
AUTOCORRECT THAT ONLY
KNEW EXCEL FORMULAS.

(

IT'S LIKE. SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS.

OKAY, TU-READ
ASM.E?UDDE.

WHY DO YOU HAVE TO TAKE THIS STUPID CLASS

People don’t just write programs in one language for
one platform anymore. Real projects have lots of parts.

Computers are changing: parallelism is much more
important today than it was in the 90s.

Stuff you learn here will be used in security, OS,
compilers, architecture, loT, etc.

48 Years of Microprocessor Trend Data

! ! ! ! NG|
] i i o aE Trans
3 3 3 W Transistors
108 e - - L (thousands)
L Laar Single-Thread
3 j Performance 9
ot N— spa kel (SpecINT x 107)
| S } | Frequency (MHz)
100 Ar 4, of @ ¢ g B ,
| . & 'ﬂ-. ? Typical Power
1Pt s e v A RTRETY WYY (Watts)
A .'3= vvvv : v f
i - m " v o2 Number of
10 T S vy 1 Logical Cores
A ! v A 4 v A\ 2 4
100 —Q: ———————————— X ————— * » 00{0——*—%%00 —————————— —————————————————————————— -
| | | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

p——
-..
-

2265 Dota Entry
& Display Sution

7770 Audio
Response Unit

= a |
am
Disk Storage
2740 Keyboard
Printer 1403 Printer

Many/most programs
written in assembly language

Most programs written in
higher level languages

WHAT IS THIS CLASS GOING TO BE LIKE?

MY GOALS FORYOU

1. Have a gut feeling for what memory is.

2. Write a few bare metal programs that aren’t constrained
by an OS.

3. Understand how the computer runs your program.

COURSE OUTLINE

« Weeks 1-3: Hardware Basics
« Weeks 4-9: Assembly Language Programming
« Weeks 10-15: C Programming

= ..
ABSTRACTIONS IN A COMPUTER

Application

Libraries

Operating System

This Class

Hypervisor

Instruction Set Architecture

Register Transfer Level (RTL)

Logic

Circuits

Devices

COURSEWEBSITE: http://comp264.o0rg

 Video lectures on the course schedule. Watch them on
your own and take notes.

« Weekly homework and quizzes on the course schedule.

LIVE ZOOM SESSIONS

« Clarification of questions and activities
» Questions
« You may record, but | won't

LABS

« Labis atime when you can do your homework (with
help from TA Jack).

« Lab sessions will be held Thursdays from 4:30-6PM
online. (Same Zoom link as class)

GRADING

No partial credit for code that
doesn’t compile.

No extended due dates.
Follow stack overflow forum rules:

« Need to show that you've
attempted the assignment
before asking for help.

« Need a specific question.

i

Homework
Participation
Progress

Quizzes & Checkins

55%
10%
10%
25%

DOING YOUR OWN WORK

« You're allowed to use Internet as a source and modify
code you find.

« Don't copy-paste code verbatim.
« We may ask you questions about how your code works.

SLOP DAYS

Each students gets five slop days to use during the
semester.

Slop day allows you to turn in homework up to 24 hrs late.
Can’t use more than two slop days on one assignment.

Tell Kyle that you're going to use slop days before the due
date.

CODING STYLE

1. Every function should have a header explaining what it does. For example:
/%
* memcpy ()
*
* Coples count bytes from src to dest. Returns
* the number of bytes copied or a negative number
* 1n case of error.
*/

int memcpy(void *dest, void *src, unsigned 1nt count) {

CODING STYLE

—

. Every function should have a header explaining what it does.
2. Functions written in assembly language also need a stack frame diagram. For example:

; memcpy

; | count | 2 bytes
P

; | src | 2 bytes
P

; | dest | 2 bytes
P

; | Ret Addr | 2 bytes

; | Caller’s BP | 2 bytes

® e e e ——
14

; Copies count bytes from src to dest. Returns...
memcpy :

CODING STYLE

1. Every function should have a header explaining what it does.

2. Functions written in assembly language also need a stack frame
diagram. For example:

3. Indent properly.
for(k = 0; k < PAGE SIZE; k++){

if (page->next != NULL) { NOOOOOO! !
page = page->next;<*—

}

CODING STYLE

1. Every function should have a header explaining what it does.

2. Functions written in assembly language also need a stack frame diagram.
For example:

3. Indent properly.
4. Comment your code

for(k = 0; k < PAGE SIZE; k++){ // Loop thru each page...
if (page->next != NULL){ // Don’'t dereference NULL ptr.

page = page->next; // Get next element of list

PROGRAMMER’S MODEL OF X86

CPU —> Memory

AX

BX

CX

DX

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

Data Registers

SI

DI

BP

SP

IP

Address Registers

AX

BX

CX

DX

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

Data Registers

SI

DI

BP

SP

IP

Address Registers

/

mov ax,100h
mov bx,200h
add ax,bx

cmp ax,200h

AX

BX

CX

DX

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

Data Registers

0100

SI

DI

BP

SP

IP

Address Registers

/

mov ax,100h
mov bx,200h
add ax,bx

cmp ax,200h

AX

BX

CX

DX

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

Data Registers

0100

0200

SI

DI

BP

SP

IP

Address Registers

mov
mov
dld add

cmp

ax,100h
bx,200h
ax,bx

ax,200h

AX

BX

CX

DX

PROGRAMMER’S MODEL OF X86: INSIDE THE CPU

Data Registers

0300

0200

SI

DI

BP

SP

IP

Address Registers

mov
mov
add

» cmp

ax,100h
bx,200h
ax,bx

ax,200h

THE ONLY THING A COMPUTER KNOWS HOW TO DO
IS EXECUTE INSTRUCTIONS.

if(a<5) { cmp ax,>5
b += a; jge .not less than
at+;
} add bx,ax
inc ax

.not less than:

KINDS OF INSTRUCTIONS

« Arithmetic
« Add, subtract, multiply,
divide
e Logic
« AND, OR, NOT, XOR
« Shifts

« Left shift, right shift,
rotate, etc.

Control

« Branch/Jump

« Procedure calls
Memory Accesses
« Load/store

THE ONLY THING A COMPUTER KNOWS HOW TO DO
IS EXECUTE INSTRUCTIONS.

Read Memory _
Fetch —»| Decode — —»| Execute —> —»| Writeback
Operands Access

HOMEWORK

« Download and install emu8086.
« You need Windows: use VMWare if you have a mac.
« If you need help, come to lab on Thursday.

 Sign up for GitHub if you don’t have an account.

« Send me you GitHub username.neil@cs.luc.edu

