CS 163 Discrete Structures: Finite State Machines and Regular Expressions

March 21, 2022

1 Introduction

2 Finite Automata

Input Symbols, $\Sigma \quad$ Set of inputs that the machine recognizes
Output Symbols Set of outputs that can be produced by the machine Accepting State Input String

Sequence of input symbols

Example Build an FSM to debounce a switch.

Example Make an FSM to detect the word "wood."

Example Make an FSM to determine if the number of a's in an input string is even or odd.

$$
\begin{array}{ll}
\Sigma=\{a, b\} & \text { Set of inputs that the machine recognizes } \\
O=\{E, O\} & \text { Set of output symbols }
\end{array}
$$

Language The set of all input strings that are accepted by a state machine.

3 Regular Expressions

3.1 Notation

$\Sigma \quad$ Alphabet of possible input symbols

* Means all possible sequences of elements in a set.

Example: $\{0 \cup 1\}^{*}=\{ \},\{0\},\{1\},\{0,0\},\{0,1\},\{1,0\},\{1,1\}, \ldots$

+ Shorthand for $R R^{*}$
Example: $(a \cup b)^{+}=(a \cup b) \circ(a \cup b)^{*}$
Strings of a and/or b of at least length 1
- Concatenation

Example: $a \circ b=a b$
Note: When no other operator is present, concatenation is implied.
\cup Union.

Regular Expression Expressions built with the \cup, \circ, and $*$ operators. The value of a regular expression is a language.

Fact Any valid regular expression can be converted to a finite state machine.

Examples

$(0 \cup 1)^{*} \quad$ The set of all possible strings of 0's and 1's of any length, including empty strings.

$\Sigma^{*} 1 \Sigma^{*}$	Strings with at least one 1.
$1^{*}\left(01^{+}\right)^{*}$	Strings where every 0 is followed by at least one 1.
$0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1$	Strings that start and end with the same symbol
0^{3}	Strings with three 0's

3.2 RexEx in vim

$/ \wedge \backslash+$	Equivalent to \wedge^{+}, which searches for spaces at the beginning of lines. \wedge refers to beginning of line.
$/ \mathrm{s} \backslash\{2\}$	Equivalent to s^{2}, which searches for sequences of two s
$/ \mathrm{baa} \backslash+$	Equivalent to $b a a^{+}$, which searches for $b a$ followed by an indeterminate number of a's.
$[H h P p]$ ackers	Finds all occurances of hackers or packers with up- percase or lowercase first letter.
$: \% \mathrm{~s} /$ foo $/ \mathrm{bar} / \mathrm{g}$	Searches for all occorances of foo and changes them to bar
$: \% \mathrm{~s} / \wedge \backslash+/ / \mathrm{g}$	Searches for spaces at the beginning of lines and re- places them with nothing

Example that doesn't work $0^{n} 1^{n}$ to match an arbitrary number of 0 's followed by exactly the same number of 1 's.

4 Grammars

A grammar is a set of rules that defines how to generate valid strings from an alphabet of symbols. Two types we talk about are regular and context-free.

Terminal and Nonterminal Symbols

Productions

4.1 Regular Grammars

In a regular grammar, you can have EITHER terminals OR nonterminals on the right side of a production, but not both.

4.2 Context-Free Grammars

In a context-free grammar, you can have BOTH terminals AND nonterminals on the right side of a production.

