
ARM 32-Bit Instructions

1 ARM Programmer’s Model

R0 Scratch Register (by convention)
R1 Scratch Register (by convention)
R2 Scratch Register (by convention)
R3 Scratch Register (by convention)
R4

R5

R6

R7 Frame Pointer (by convention)
R8

R9

R10

R11

R12

R13 Stack Pointer (SP)
R14 Link Register (LR)
R15 Program counter (PC)

2 ARM Instructions

2.1 Data Movement Instructions

2.1.1 LDR

(Load Register)
Loads a value into a register

Example Usage Loading a literal (hardcoded constant) value into a register

int main () {

int i = 5; // allocate R0 to i

}

.text

.global main

main:

ldr r0,=5

bx lr

Example Usage Loading the value of a global variable into a register. The global variable lives in memory at some
compiler-assigned address. We can refer to the address of the global variable by using the global variable’s name. The first
LDR instruction in the program below gets the compiler-assigned address of the global variable into R1. The second LDR goes
out to memory at the address in R1 and reads four bytes into R0, copying the value of the global variable into R0.

1



int global_var = 77;

int main () {

int i = global_var; // i lives in R0

}

.text

.global main

main:

ldr r1,=global_var ; Get addr of global_variable in R1

ldr r0,[r0] ; Load data stored @ addr of global_variable in R0

bx lr

.data

global_var:

.word 77 ; // Initialize global_variable to 77

2.1.2 PUSH and POP

Save one or more register values on the stack. In general, any register that you use in a function should get pushed onto the
stack at the beginning of the function and popped back off of the stack at the end. The only exception to this rule is R0,
which is used to hold the function’s return value. R0 should not get saved and restored.

PUSH and POP should also be used to save and restore the link register, which gets modified by function calls (BL instruction).

Example Usage

int main () {

int i = 5; // allocate R0 to i

}

.text

.global main

main:

push {r0} ; Save value in R0 so LDR doesn’t overwrite it

ldr r0,=5 ; Set R0 to 5

pop {r0} ; Restore R0’s old value from stack

bx lr

2.1.3 MOV

(Move)
Copies a value from one register to another

Example Usage

int main () {

int i = 5; // i lives in R0

int num = i; // num lives in R1

}

.text

.global main

main:

ldr r0,=5 ; i <- 5

mov r1,r0 ; num <- i

bx lr

2


