RASPBERRY PI ASSEMBLER

Roger Ferrer Ibáñez
Cambridge, Cambridgeshire, U.K.
William J. Pervin
Dallas, Texas, U.S.A.

December 18, 2018

Contents

1 Raspberry Pi Assembler 1
1.1 Writing Assembler 1
1.2 Our first program 2
1.3 First program results 3
2 ARM Registers 7
2.1 Basic arithmetic 7
3 Memory 9
3.1 Memory 9
3.2 Addresses 9
3.3 Data 10
3.4 Sections 11
3.5 Load 11
3.6 Store 14
3.7 Programming style 15
4 Debugging 19
4.1 gdb 19
5 Branching 25
5.1 A special register 25
5.2 Unconditional branches 26
5.3 Conditional branches 26
6 Control structures 31
6.1 If, then, else 31
6.2 Loops 32
$6.31+2+3+4+\cdots+22$ 32
$6.43 \mathrm{n}+1$ 35
7 Addressing modes 39
7.1 Indexing modes 39
7.2 Shifted operand 40
8 Arrays and structures 43
8.1 Arrays and structures 43
8.2 Defining arrays and structs 44
8.3 Naive approach without indexing modes 44
8.4 Indexing modes 45
8.4.1 Non-updating indexing modes 45
8.4.2 Updating indexing modes 46
8.4.3 Post-indexing modes 47
8.4.4 Pre-indexing modes 48
8.5 Back to structures 49
8.6 Strings 49
9 Functions 51
9.1 Do's and don'ts of a function 51
9.1.1 New specially named registers 51
9.1.2 Passing parameters 52
9.1.3 Well behaved functions 52
9.1.4 Calling a function 52
9.1.5 Leaving a function 52
9.1.6 Returning data from functions 53
9.2 Hello world 53
9.3 Real interaction! 55
9.4 Our first function 56
9.5 Unified Assembler Language 59
10 Searching and Sorting 61
10.1 Binary Search 61
10.2 Insertion Sort 64
10.3 Random Numbers 67
10.4 More Debugging 69
11 Recursion and the Stack 71
11.1 Dynamic activation 71
11.2 The stack 72
11.3 Factorial 74
11.4 Load and Store Multiple 77
11.5 Factorial again 78
11.6 Tail-recursion 80
11.7 Dynamic Programming 82
12 Conditional Execution 87
12.1 Predication 87
12.2 The pipe line of instructions 88
12.3 Predication in ARM 90
12.4 Collatz conjecture revisited 90
12.5 Adding predication 92
12.6 Does it make any difference in performance? 92
12.7 The s suffix 93
13 Floating-point Numbers 97
13.1 IEEE-754 Standard 97
13.2 Examples 99
13.3 Extremes 100
13.4 Exceptions 101
13.5 Accuracy 101
13.6 *Fixed-point Numbers 103
14 Real Computations 105
14.1 VFPv2 Registers 105
14.2 Arithmetic operations 106
14.3 Load and Store 108
14.4 Movements between registers 109
14.5 Conversions 110
14.6 Modifying the fpscr 111
14.7 Function call convention and floating-point registers 111
14.8 Printing Floating-point Numbers 112
15 Pointers 113
15.1 Passing data to functions 113
15.2 What is a pointer? 113
15.3 Passing large amounts of data 116
15.4 Passing a big array by value 117
15.5 Passing a big array by reference 121
15.6 Modifying data through pointers 123
15.7 Returning more than one piece of data 126
16 System Calls 127
16.1 File I/O 128
16.2 lseek 131
17 Local data 133
17.1 The frame pointer 133
17.2 Dynamic link of the activation record 134
17.3 What about parameters passed in the stack? 137
17.4 Indexing through the frame pointer 137
18 Inline Assembler in C Code 143
18.1 The asm Statement 143
18.2 Simple Example 144
19 Thumb 147
19.1 The Thumb instruction set 147
19.2 Support of Thumb in Raspbian 147
19.3 Instructions 147
19.4 From ARM to Thumb 148
19.5 Calling functions in Thumb 149
19.6 From Thumb to ARM 151
19.7 To know more 152
20 Additional Topics 153
20.1 ARM Instruction Set 153
20.2 Interrupt Handling 154
20.3 To know more 155
A ASCII Standard Character Set 157
B Integers 159
B. 1 Unsigned Integers 159
B. 2 Signed-Magnitude Integers 159
B. 3 One's Complement 160
B. 4 Two's Complement 161
B. 5 Arithmetic and Overflow 162
B. 6 Bitwise Operations 163
C Matrix Multiplication (R.F.I.) 165
C. 1 Matrix multiply 165
C. 2 Accessing a matrix 167
C. 3 Naive matrix multiply of 4×4 single-precision 168
C. 4 Vectorial approach 172
C. 5 Fill the registers 174
C. 6 Reorder the accesses 177
C. 7 Comparing versions 182
D Subword Data 185
D. 1 Loading 185
D. 2 Storing 188
D. 3 Alignment restrictions 188
E GPIO 193
E. 1 Onboard led 193
E. 2 wiringPi 195
E. 3 GPIO pins 195
E. 4 Light an LED 196

Preface

This text is based on the first author's tutorial:
http : //thinkingeek.com/arm - assembler - raspberry - pi/
and the second author's MIPS assembler book:
A Programmer's Guide to Assembler
(McGraw-Hill Custom Publishing).
This work is licenced under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence. To view a copy of that licence, visit
http : //creativecommons.org/licences/by - nc - sa/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Note to reader: Be sure to look at all the Projects, even if you do not try them out. They may contain new information that is used in later chapters.

Caveat: There is a new Raspberry Pi 3 with a 64 -bit architecture and other great features for the same price! In this work we will continue to give the Raspberry Pi 2 information and, fortunately, the 3 seems to be backward compatible; that is, our programs run on it as well. In particular, the GNU assembler as works as described. Unfortunately, it does not support the additional registers or other improvements in the architecture. This book will be completely rewritten as soon as better software is available.

Emulator: There is a very nice free emulator for the Raspberry Pi available through the web called $Q E M U$. It's easy to use and comes in handy when you do not have your actual Pi with you and want to try something out.

Disclaimer: Don't use any of our code for commercial purposes and expect it to work. The authors, ARM Ltd., and the Raspberry Pi Foundation take no responsibility for physical or mental damage caused by using this text.

1 Raspberry Pi Assembler

You will see that our explanations do not aim at being very thorough when describing the architecture. We will try to be pragmatic.

ARM is a 32-bit architecture that has a simple goal in mind: flexibility. While this is great for integrators (as they have a lot of freedom when designing their hardware), it is not so good for system developers who have to cope with the differences in the ARM hardware. So in this text we will assume that everything is done on a Raspberry Pi 2 Model B running Raspbian (the one with at least 2 USB ports and 512 MB of RAM).

Some parts will be ARM-generic but others will be Raspberry Pi specific. We will not make a distinction. The ARM website (http://infocenter.arm.com/) has a lot of documentation. Use it!

1.1 Writing Assembler

An assembler language is just a thin syntactic layer on top of its binary code. Unfortunately, while somewhat similar in concept, they differ greatly between different architectures. Learning one will certainly help in learning others, but it will still require lots of work.

Binary code is what a computer can run. Each architecture requires different binary code which is why the assembler languages also differ. The code we generate will not run on an Intel ${ }^{〔}$ processor, for example. It is composed of instructions that are encoded in a binary representation (such encodings are documented in the ARM manuals). You could write binary coded instructions but that would be painstaking (besides some other technicalities related to Linux itself that we can happily ignore now).

So we will write assembler - ARM assembler. Since the computer cannot run assembler code, we have to get binary code from it. We use a tool called, well, an assembler to assemble the assembler code into binary code that we can run.

The program to do this is called as and we will use it to assemble our programs. In particular it is the GNU Assembler, which is the program from the GNU project and sometimes it is also known as gas for this reason.

To prepare an assembler language program for the assembler, just open an editor like vim, nano, or emacs in Raspbian. Our assembler language files (called source files) will have a suffix .s. That is the usual convention for the ARM (some architectures may use .asm or some other convention).

1.2 Our first program

We have to start with something, so we will start with a ridiculously simple program which does nothing but return an error code.

```
1 /* -- first.s */
2 /* This is a comment */
3 .global main /* entry point must be global */
4 .func main /* 'main' is a function */
5
6 main: /* This is main */
7 mov r0, #2 /* Put a 2 into register r0 */
8 bx lr /* Return from main */
```

The numbers in the left column are just line numbers so that we can refer to them in this text. They are not part of the program. Create a file called first.s and enter the contents (without line numbers) exactly as shown above. Save it.

To assemble the file enter the following command (write exactly what comes after the $\$$ prompt), ignoring the line numbers as usual.

```
1 $ as -g -mfpu=vfpv2 -o first.o first.s
```

This will create a file named first.o. Now link this file to get an executable file in binary. (This actually uses the GNU C compiler!)

```
2 $ gcc -o first first.o
```

If everything goes as expected, you will get an executable binary file called first. This is your program. Run it.

```
3 $ ./first
```

[Note: The prefix ./ tells the system to look in the current directory for the executable file.] It should seem to do nothing. Yes, it is a bit disappointing, but it actually does something. Get its error code this time.

```
4 $ ./first ; echo $?
5 2
```

Great! That error code of 2 is not by chance, it is due to that \#2 in line 7 of the assembler source code.

Since running the assembler and the linker soon becomes boring, it is recommended that you use the following Makefile file or the Windows batch file instead.

```
# Makefile
first: first.o
    gcc -o $@ $+
    first.o : first.s
    as -g -mfpu=vfpv2 -o $@ $<
    clean:
    rm -vf first *.o
```

all: first $\quad 1$ \#!/bin/bash

```
2 as -g -mfpu=vfpv2 -o $1.o $1.s
3 gcc -o $1 $1.o
rm $1.0
5 ./$1 ; echo $?
```


1.3 First program results

We cheated a bit just to make things a bit easier. We wrote a C main function in assembler which only does return 2 ; . This way our assembler program was easier to write since the C runtime system would handle initialization and termination of the program for us. We will use this approach almost all the time since the Raspberry Pi system comes with a C compiler and we might as well use it.

Let's review every line of our minimal assembler file.

```
1 /* -- first.s */
2 /* This is a comment */
```

These are comments. Comments are enclosed in $/ *$ and ${ }^{*} /$. Use them to document your assembler code as they are ignored. As usual, do not nest /* and */ inside /* because it does not work. Assembler code is very hard to read so helpful comments are quite necessary.

```
3 .global main /* entry point and must be global */
```

This is a directive for the GNU Assembler. Directives tell the GNU Assembler to do something special other than emit binary code. They start with a period (.) followed by the name of the directive and possibly some arguments. In this case we are saying that main is a global name; i.e., recognizable outside our program. This is needed because the C linker will call main at runtime. If it is not global, it will not be callable and the linking phase will fail.

4 .func main /* 'main' is a function */

Here we have another GNU assembler directive and it states that main is a function. This is important because an assembler program usually contains instructions (i.e., code) but may also contain data. We need to explicitly state that main actually refers to a function, because it is code.

```
6 main: /* This is main */
```

Every line in the GNU Assembler language that is not a directive will be of the form
label: instruction parameters comments
We can omit any part or all four fields (since blank lines are ignored). A line with only label: applies that label to the next line (you can have more than one label referring to the same thing that way). The instruction part is the ARM assembler language itself. Of course if there is no instruction there would be no parameters. In this case we are just defining main since there is no instruction to be emitted by the assembler.

```
7 mov r0, #2 /* Put a 2 inside the register r0 */
```

Whitespace (spaces or tabs) is ignored at the beginning of the line, but the indentation suggests visually that this instruction belongs to the main function. Since assembler code is very hard to read, such regular indentation is strongly recommended. Line 7 is the mov instruction which means move. We move the integer 2 into the register r0. In the next chapter we will see more about registers, do not worry now. The syntax may seem awkward because the destination is actually at the left. In ARM syntax it is almost always at the left (just as in an assignment statement like: r0 $=2$;) so we are saying something like move to register r0 the immediate value 2. We will see what immediate value means in ARM in the next chapter but obviously the \# mark is being used to indicate an actual number.

In summary, this instruction puts the number 2 inside the register r0 (this effectively overwrites whatever register r0 may have had at that point).

```
8 bx lr /* Return from main */
```

This instruction bx means Branch and eXchange. We do not really care at this point about the exchange part. Branching means that we will change the flow of the instruction execution. An ARM processor runs instructions sequentially, one after the other. Thus after the mov above, this bx instruction will be run (this sequential execution is not specific to ARM, but what happens in almost all architectures). A branch instruction is used to change this implicit sequential execution. In this case we branch to whatever address the lr register contains. We do not care now what lr contains. It is enough to understand that this instruction just leaves the main function, thus effectively ending our program.

And the error code? Well, the result of main is the error code of the program and when leaving the function such result must be stored in the register r0, so the mov instruction performed by our main is actually setting the error code to 2 .

Projects

1. Experiment with returning other numbers than just 2 .
2. How large a return code gives the correct answer?
3. How large an integer can you use in line 7 and have it accepted by the assembler?
4. Since comments explaining each line are often recommended, there is another form of comment. In as and the QEMU emulator, the symbol used is the "at" sign (@) to indicate that the rest of the line is a comment and is to be ignored by the assembler. Test your assembler and see what character is used - and then use it! Real assembler programmers almost always only use the /* . . . */ construct for multi-line or special comments.
5. Although it will be very useful to go through the GNU C Compiler gcc when we start studying input and output, at this stage we may just use the linker or LoaDer (ld) that comes with the system.
In addition, to avoid the C compiler completely, we may use a complicated call on the operating system (Raspbian) to exit. The input to the assembler as would be the following program.s:
```
1 /* -- program.s */
2 .global _start
3 _start:
4 mov r0, #2
5 mov r7, #1
svc 0 @ or SWI 0 -- both work
```

Note that we are not writing a main program for the C compiler. We will treat this much later. The call on the assembler followed by the loader appears in the following.

Note: The -g parameter to as will be important when we study debugging in Chapter 4. The $-\mathrm{mf} p \mathrm{p}=\mathrm{vfpv2}$ parameter will be necessary starting in Chapter 14.
6. In order to avoid putting the prefix ./ in front of all our programs, we may change the path of our operating system with the command:
export PATH=\$PATH:/home/pi/code,
assuming that we have put all our code in the subdirectory "code". Try it, but remember that commands like this one can really mess up your system!

2 ARM Registers

At its core, the processor in a computer is nothing but a powerful calculator. Calculations can only be carried out using values stored in very tiny memories called registers. The ARM processor in a Raspberry Pi 2 has, in addition to some specialized registers to be discussed later, 16 integer registers and 32 floating point registers. The processor uses these registers to perform integer computations and floating point computations, respectively. We will put floating registers aside for now and eventually we will get back to them in a future chapter. Let's focus on the integer registers.

Those 16 integer registers in our ARM processor have names from r0 to r15. They can hold 32 bits each. Of course these 32 bits can encode whatever you want. That said, it is convenient to represent integers in two's complement form (see Appendix B) as there are instructions which perform computations assuming this encoding. So from now on, except as noted, we will assume our registers contain integer values encoded in two's complement form.

Not all the registers from r0 to r15 can be used in exactly the same way - some are reserved for special purposes - but we will not care about that for now. Just assume what we do is correct.

2.1 Basic arithmetic

Almost every processor can do some basic arithmetic computations using the integer registers. The same is true for ARM processors. You can ADD two registers. Let's modify our example from the previous chapter.

```
/* -- sum01.s */
.global main
.func main
main:
    mov r1, #3 /* r1 <- 3 */
    mov r2, #4 /* r2 <- 4 */
    add r0, r1, r2 /* r0 <- r1 + r2 */
    bx lr
```

If we assemble, compile, and run this program, the error code returned is, as expected, 7 - the sum of the 3 in register r1 and the 4 in register $r 2$.

```
$ ./sum01 ; echo $?
```

7

We note immediately that the add instruction takes three registers as parameters. We will treat this and other instructions in more detail soon but it is clear that the first parameter must be where the result of the addition is placed while the other two parameters are the registers whose contents are to be added.

Nothing prevents us from using r0 in a more clever and efficient way.

```
/* -- sum02.s */
.global main
.func main
main:
6 mov r0, #3 /* r0 <- 3 */
7 mov r1, #4 /* r1 <- 4 */
8 add r0, r0, r1 /* r0 <- r0 + r1 */
9 bx lr
```

4

Which behaves as expected but uses only two registers instead of three which may be an important consideration later.

```
$ ./sum02 ; echo $?
7
```


Projects

1. Try adding other values than just 3 and 4.
2. Can you do subtraction by adding a negative number?
3. Is a negative return code possible?
4. The term "immediate" prefixed to "value" comes from the fact that small numbers may, in some computers and assemblers, be placed within the machine instruction and thus save a reference to memory (as described later). The "pound" or "hash" sign (\#) is used to indicate that the following actually a number. Test to see what happens if it is omitted.
5. Rewrite sum02.s so that it does not require the C compiler.

3 Memory

Abstract

We saw in Chapters 1 and 2 that we can move values to registers (using the mov instruction) and add two registers (using the add instruction). If our processor were only able to work on registers it would be rather limited.

3.1 Memory

A computer has a memory where code (.text in the assembler) and data are stored so there must be some way to access it from the processor. A bit of digression here: In 386 and x86-64 architectures, instructions can access registers or memory, so we could add two numbers, one of which is in memory. You cannot do this in an ARM processor where all operands must be in registers. We can work around this problem (not really a problem but a deliberate design decision that goes beyond the scope of this text but see the Project) by loading data to a register from memory and storing data from a register to memory.

These two special operations, loading and storing, that are instructions on their own are usually called load and store. There are several ways to load and store data from/to memory but in this chapter we will focus on the simplest ones: LoaD to Register (ldr) from memory and STore from Register (str) to memory.

Loading data from memory is a bit complicated because we need to talk about addresses.

3.2 Addresses

To access data in memory we need to give it a name. Otherwise we could not refer to what piece of data we want. Fortunately, a computer does have a name for every byte of memory. It is the address. An address is a number - in our Raspberry Pi 2 a 32-bit number - that identifies every byte (that is 8 bits) of the memory. (See Figure 3.1)

When loading or storing data from/to memory we need to compute an address. This address can be computed in many ways. Each of this ways is called an addressing mode. The ARM processor in a Raspberry Pi 2 has several of these addressing modes and it
will take a while to explain them all later, so here we will consider just one: addressing through a register.

It is not by chance that the processor has integer registers of 32 bits and the addresses of the memory are 32 bit numbers. That means that we can keep an address inside a register. Once we have an address inside a register, we can use that register to find the address in memory in which to load or store some piece of data.

Memory is like an array
of bytes where each byte has its own address.

Figure 3.1

3.3 Data

When running a program, memory contains not only the code emitted by the assembler (called text), but also the data to be used by the program. We were deliberately loose when describing labels of the assembler. Now we can unveil their deep meaning: labels in the assembler are just symbolic names for addresses in your program. These addresses may refer either to data or code. So far we have used only one label (main) to designate the address of our main function. A label only denotes an address, never its contents. Bear that in mind.

We said that an assembler is a thin layer on top of the binary code. Well, that thin layer may now look to you a bit thicker since the assembler tool (as) is left responsible for assigning values to the addresses of the labels. This way we can use these labels and the assembler will do some magic to make it work.

Thus, we can define some datum and attach a label to its address. It is up to us, as assembler programmers, to ensure that the storage referenced by the label has the appropriate size and value.

Let's define a 4 byte variable and initialize it to 3 . We will give it the label myvar1.

```
.balign 4
myvar1:
    .word 3
```

There are two new assembler directives in the example above: .balign and .word. When the assembler as encounters a . balign directive with parameter 4, it ensures that the next address will start on a 4-byte boundary. That is, the address of the next datum emitted (either an instruction or data) will be a multiple of 4 bytes. This is important because the ARM processor imposes some restrictions on the addresses of the data with which you may work. This directive does nothing if the address was already aligned to 4. Otherwise the assembler will emit some padding bytes, which are not used at all by the program, so the alignment requested is fulfilled. It is possible that we could omit this directive if all the entities emitted by the assembler were 4 bytes wide (4 bytes is 32 bits), but as soon as we want to use multiple sized data this directive will become mandatory.

Now we define the address of myvar1. Thanks to the previous .balign directive, we know its address will be aligned on a 4 byte boundary.

The . word directive states that the assembler should emit the value of the argument of the directive as a 4 byte integer. In this case it will emit 4 bytes containing the value 3. Note that we rely on the fact that . word emits 4 bytes because that is defined to be the size of a word in the ARM architecture.

3.4 Sections

Data resides in memory like code but, due to some practical technicalities that we do not care about very much now, it is usually kept together in what is called the data section. The . data directive tells the assembler to emit the entities in the data section. The .text directive makes a similar thing happen for code (The .func directive made that unnecessary in the preceding code.) So we will put data after a .data directive and code after a .text directive.

3.5 Load

Now we shall retrieve our example from Chapter 2 and enhance it with some accesses to memory. We first define two 4 byte variables myvar1 and myvar2, initialized to 3 and 4 respectively. We will load their values using ldr, and perform an addition. The resulting error code should be 7, just as in Chapter 2.

```
1 /* -- load01.s */
2
3 /* -- Data section */
4 .data
```

```
5
6 /* Ensure variable is 4-byte aligned */
.balign 4
/* Define storage for myvar1 */
myvar1:
    /* Contents of myvar1 is 4 bytes containing the value 3 */
    .word 3
/* Ensure variable is 4-byte aligned */
.balign 4
/* Define storage for myvar2 */
myvar2:
    /* Contents of myvar2 is 4 bytes containing the value 4 */
    .word 4
/* -- Code section */
.text
/* Ensure code is 4 byte aligned */
.balign 4
.global main
main:
    ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
    ldr r1, [r1] /* r1 <- *r1 */
    ldr r2, addr_of_myvar2 /* r2 <- &myvar2 */
    ldr r2, [r2] /* r2 <- *r2 */
    add r0, r1, r2 /* r0 <- r1 + r2 */
        bx lr
/* Labels needed to access data */
addr_of_myvar1: .word myvar1
addr_of_myvar2: .word myvar2
```

We have a complication in the example above because of limitations of the assembler (see the Projects for a simple solution available in our assembler). As you can see there are four ldr instructions. We will try to explain their meaning. First, though, we have to discuss the following two labels.

34 /* Labels needed to access data */
35 addr_of_myvar1: .word myvar1
36 addr_of_myvar2: .word myvar2
These two labels are addresses of memory locations that contain the addresses of myvar1 and myvar2. You may be wondering why we need them if we already have the addresses of our data in labels myvar1 and myvar2. A detailed explanation is a bit long, but
what happens here is that myvar1 and myvar2 are in a different section - in the .data section. That section exists so that the program can modify it. That is why variables are kept there. On the other hand, code is not usually modified by the program (for efficiency and for security reasons). That is one reason to have two different sections with different properties attached to them. But, we cannot directly access a symbol in one section from another one. Thus, we need some locations in the .code section that contain the addresses of entities in the .data section. The assembler as helps us.

When the assembler emits the binary code, .word myvar1 will not actually be the address of myvar1 but instead it will be a relocation. A relocation is the way the assembler emits an address, the exact value of which is unknown but will known when the program is linked (i.e., when generating the final executable). It is like saying "I have no idea where this variable will actually be, let the linker patch this value for me later". So this addr_of myvar1 will be used instead. The address of addr_of myvar1 is in the same .text section. That value will be patched by the linker during the linking phase (when the final executable is created and it knows where all the entities of our program will definitely be laid out in memory). This is why the linker (invoked internally by the C compiler gcc) is called 1 d . It stands for Link eDitor.

```
27 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
28 ldr r1, [r1] /* r1 <- *r1 */
```

Again, there are two loads. The first one in line 27 actually loads the relocation value of the address of myvar1. That is, there is some data in memory, the address of which is addr_of myvar1, with a size of 4 bytes containing the real address of myvar1. After the first ldr, in $r 1$ we have the real address of myvar1. But we do not want the address at all, but the contents of the memory at that address, thus we do a second ldr.

Assuming the given memory contents, this is what happens to registers after a load instruction is executed.

Figure 3.2

The two loads obviously have different syntaxes. The first ldr uses the symbolic address of addr_of_myvar1 label. The second ldr uses the value stored in the register as the addressing mode. So, in the second case we are using the value inside r1 as the address as indicated by the square brackets. In the first case, we do not actually know what the assembler uses as the addressing mode, so we will ignore it for now.

The program finally loads the two 32 bit values from myvar1 and myvar2, that had initial values 3 and 4, adds them, and sets the result of the addition as the error code of the program in the r0 register just before leaving main.

```
$ ./load01 ; echo $?
7
```


3.6 Store

We now take the previous example but instead of setting the initial values of myvar1 and myvar2 to 3 and 4 respectively, we will set both to 0 . We will then reuse the existing code but prepend some assembler code to store the 3 and 4 in the variables.

```
/* -- store01.s */
3 /* -- Data section */
4.data
6 /* Ensure variable is 4-byte aligned */
7 .align 4
8 /* Define storage for myvar1 */
9 myvar1:
10 /* Contents of myvar1 is just '0' */
11 .word 0
13 /* Ensure variable is 4-byte aligned */
14 .align 4
15 /* Define storage for myvar2 */
16 myvar2:
17 /* Contents of myvar2 is just '0' */
18 .word 0
20 /* -- Code section */
21 .text
23 /* Ensure code section starts 4 byte aligned */
```

2
5
12
19
22

```
24 .balign 4
25 .global main
26 main:
27 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
28 mov r3, #3 /* r3 <- 3 */
29 str r3, [r1] /* *r1 <- r3 */
30 ldr r2, addr_of_myvar2 /* r2 <- &myvar2 */
31 mov r3, #4 /* r3 <- 4 */
32 str r3, [r2] /* *r2 <- r3 */
33
34 /* Same instructions as above */
35 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
36 ldr r1, [r1] /* r1 <- *r1 */
37 ldr r2, addr_of_myvar2 /* r2 <- &myvar2 */
38 ldr r2, [r2] /* r2 <- *r2 */
39 add r0, r1, r2
40 bx lr
4 1
42 /* Labels needed to access data */
43 addr_of_myvar1: .word myvar1
44 addr_of_myvar2: .word myvar2
```

Note an important oddity in the str instructions in lines 29 and 32 of this code. The destination operand of the instruction is not the first operand. Instead the first operand is the source register and the second operand is the destination register.

```
$ ./store01; echo $?
```

7

3.7 Programming style

While the code emitted by the assembler will probably remain the same, the style with which one programs can have an effect. First of all, most programming is done in an environment in which many programmers work together and so have to read other people's code. Assembler is notoriously hard to read so many comments are appropriate. In order to encourage having a comment on almost every line of assembler code, the as assembler (and most others) makes available another form of comment. Everything following the "at" symbol (@) is ignored by the assembler. This is the preferred method of making comments, leaving the /* . . . */ construct for multiline or special comments.

Another simplification is made available to the programmer by the as assembler. Just as compilers usually do more than just compile code, assemblers often do much more than just translate mnemonics into code. For example, the need to obtain the address of
data in the .data section happens so often that a special symbol is used for that rather than the cumbersome method outlined above. If one refers to =myvar in, say, a load (ldr) operation, all that relocation and other duties are taken care of by the assembler and there is no need for the extra labels as we used in lines 43 and 44.

There are other assumptions one can usually make about what the assembler does. For example, we would expect that both the .data and the .text sections are started on 4 -byte boundaries, at least. In addition, if we know that the datum for which space is being reserved takes exactly four bytes, we don't have to bother telling the assembler the redundant directive .balign again and again.

Here is a version of the same program that we will use in the next chapter.

```
1 /* -- store02.s */
2 .data
3 myvar1: .word 0
4 myvar2: .word 0
.text
.global main
main:
ldr r1, =myvar1 @ r1 <- &myvar1
mov r3, #3 @ r3 <- 3
10 str r3, [r1] @ *r1 <- r3
11 ldr r2, =myvar2 @ r2 <- &myvar2
12 mov r3, #4 @ r3 <- 4
13 str r3, [r2] @ *r2 <- r3
14 ldr r1, =myvar1 @ r1 <- &myvar1
15 ldr r1, [r1] @ r1 <- *r1
16 ldr r2, =myvar2 @ r2 <- &myvar2
17 ldr r2, [r2] @ r2 <- *r2
18 add r0, r1, r2
19 bx lr
```

Even more simplification is possible. If we are careful, we might notice times in which the contents of a register are not changed between two commands and so reloading the register is not necessary. We will not go that far yet (but see the Projects).

Note: If the company for which you work has standards, follow them carefully. Other employees (and your boss) will expect your code to meet those standards.

Note: Try to avoid using any "tricks" in your code. If you feel you must, at least document them very explicitly. Even if you think no one else will ever see your code, you will forget what you did by tomorrow.

Note: Be careful about using any special knowledge you have about the hardware, operating system, or compiler (or assembler) on your system. When a new and im-
proved version of the operating system is installed, any "undocumented" features may disappear. The same is true about all software. If your company changes hardware what will happen to your code?

Projects

1. Test to see if the .balign directive is really needed at the beginning of either the .data or the .text sections in store01.s.
2. Between lines 5 and 6 in store $01 . s$, add the line
S: .asciz "string"
and see what happens. Is it different if "string" is replaced by "string! "? [Note: The directive .asciz actually means emit the string of characters in its parameter using the ASCII encoding and terminating it with zero (null) character as used in the C language.]
3. Look up the definition and history of the Reduced Instruction Set Computer (RISC). In addition, consider the design decision made by the inventors to limit access to memory to the load and store operations. Investigate the relative speeds of programs that highly access memory to those that do not.
4. Explain why the instructions in lines 35 and 37 of store01.s are not necessary (try it out). Can lines 14 and 16 be eliminated in store02.s?

4 Debugging

As we learn the foundations of ARM assembler language programming, our examples will become longer and longer. Since it is easy to make mistakes, it is worth learning how to use the GNU Debugger gdb to debug your assembler code. If you have developed $\mathrm{C} / \mathrm{C}++$ programs in Linux and have never used gdb, shame on you. If you know gdb this small chapter will explain to you how to debug assembler directly.

4.1 gdb

We will use the example store02 from Chapter 3. Start gdb specifying the program you are going to debug. We will show the results from one run on our system. Similar responses will be had by your program using the Raspberry Pi or the QEMU emulator but some of the numbers may change slightly.

```
$ gdb --args ./store02
GNU gdb (GDB) 7.4.1-debian
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
    <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "arm-linux-gnueabihf".
For bug reporting instructions, please see:
<htp://www.gnu.org/software/gdb/bugs/> ...
Reading symbols from /home/RPiA/Chapter03/store02 ... done.
(gdb)
```

We are in the interactive mode of gdb. In this mode you communicate with gdb using commands. There is a builtin help command called help. Or you can check the GNU Debugger Documentation

```
http://sourceware.org/gdb/current/onlinedocs/gdb/.
```

The first command to learn is
(gdb) quit
Ok, now start gdb again. The program is not running yet. In fact gdb will not be able to tell you many things about it since it does not have any debugging information. But that is fine, we are debugging assembler, so we do not need much debugging information. As a first step let's start the program.

```
(gdb) start
Temporary breakpoint 1 at 0x8394 : file store02.s, line 14.
Starting program: /home/RPiA/Chapter03/store02
Temporary breakpoint 1, main () at store02.s : 9
    9 mov r3, #3 @ r3 <- 3
```

This tells us that, gdb ran our program up to and including the first instruction main (note that some systems may not execute the first instruction). This is great because we have skipped all the initialization steps of the C library and have only run the first instruction of our main function. Let's see what's there. We will use the disassemble command to translate the binary code back into assembler code.

```
(gdb) disassemble
Dump of assembler code for function main:
    0x00008390 <+0>: ldr r1, [pc, #40] ; 0x83c0 <main+48>
=> 0x00008394 <+4>: mov r3, #3
    0x00008398 <+8>: str r3, [r1]
    0x0000839c <+12>: ldr r2, [pc, #32] ; 0x83c4 <main+52>
    0x000083a0 <+16>: mov r3, #4
    0x000083a4 <+20>: str r3, [r2]
    0x000083a8 <+24>: ldr r1, [pc, #16] ; 0x83c0 <main+48>
    0x000083ac <+28>: ldr r1, [r1]
    0x000083b0 <+32>: ldr r2, [pc, #12] ; 0x83c4 <main+52>
    0x000083b4 <+36>: ldr r2, [r2]
    0x000083b8 <+40>: add r0, r1, r2
    0x000083bc <+44>: bx lr
    0x000083c0 <+48>: andeq r0,r1,r4,ror #10
    0x000083C4 <+52>: andeq r0,r1,r8,ror #10
End of assembler dump.
```

This is very complicated but gives us a great deal of information. First, we see that our program main has been placed in memory at location 0x00008390. Next, the first instruction in our code was ldr r1, =myvar1 but that has been linked to the actual address of myvar 1 at 0 x 83 c 0 which is 48 bytes from where main begins. Down there we see a strange instruction (andeq r0,r1,r4, ror \#10) right after the last of our code instructions (bx lr). Had we continued with store01.s instead, we would remember that there were two more things in the .code section: places to keep the real addresses of myvar1 and myvar2. The assembler has actually done that for us but the debugger -
that can't know everything - has just translated those addresses into presumed assembler code for some instructions.

Later we will also consider those addresses of the form [pc, \#40] that are "pc-relative" addressing.

There is an arrow $=>$ pointing to the instruction we are going to run (it has not been run yet). Before running it, let's inspect some registers. The commands should be self-explanatory (but the results may differ slightly on other systems).

```
(gdb) info registers r0 r1 r2 r3
r0 0x1 1
r1 0x10564 66916
r2 0xbefff86c 3204445692
r3 0x8390 33680
```

We see that the contents of the registers are given to us both in hex and decimal. We can modify registers using p which means print but also evaluates side effects. For instance, the following sets the value of register r0 to 2 and prints the result.

```
(gdb) p $r0 = 2
$1 = 2
```

gdb has printed $\$ 1$, this is the counter it uses for the printed result and we can use it when needed, so we can skip some typing. The numbering system is not very useful now but it may be when we print a complicated expression.

Now we can again look at the registers (one could up-arrow twice).

```
(gdb) info registers r0 r1 r2 r3
r0 0x2 2
r1 0x10564 66916
r2 0xbefff86c 3204445692
r3 0x8390 33680
```

(gdb) p \$1
$\$ 2=2$

Now we could also use $\$ 2$ to denote the second printed result, and so on. Now it is time to run the second instruction and halt again.

```
(gdb) stepi
10 str r3, [r1] @ *r1 <- r3
```

In order to see what happened, let's use disassemble, again.

```
(gdb) disassemble
Dump of assembler code for function main:
    0x00008390 <+0>: ldr r1, [pc, #40] ; 0x83c0 <main+48>
    0x00008394 <+4>: mov r3, #3
=> 0x00008398 <+8>: str r3, [r1]
    0x0000839c <+12>: ldr r2, [pc, #32] ; 0x83c4 <main+52>
    0x000083a0 <+16>: mov r3, #4
    0x000083a4 <+20>: str r3, [r2]
    0x000083a8 <+24>: ldr r1, [pc, #16] ; 0x83c0 <main+48>
    0x000083ac <+28>: ldr r1, [r1]
    0x000083b0 <+32>: ldr r2, [pc, #12] ; 0x83c4 <main+52>
    0x000083b4 <+36>: ldr r2, [r2]
    0x000083b8 <+40>: add r0, r1, r2
    0x000083bc <+44>: bx lr
    0x000083c0 <+48>: andeq r0,r1,r4,ror #10
    0x000083c4 <+52>: andeq r0,r1,r8,ror #10
```

End of assembler dump.

Again, let's see what happened in the registers.
(gdb) info registers r0 r1 r2 r3
r0 0x2 2
r1 0x10564 66916
r2 0xbefff86c 3204445692
r3 0x3 3
That is exactly what we expected from the instruction mov r3, \#3. Register r3 now contains the number 3. Now let's perform the next instruction.

(gdb) stepi

11 ldr r2, =myvar2 @ r2 <- \&myvar2
Let's see what happened in register r1.

```
(gdb) info register r1
r1 0x10564 66919
```

Great, it has changed. In fact this is the address of myvar1. Let's check that using its symbolic name and C syntax.
(gdb) p \&myvar1
\$3 = (<data variable, no debug info> *) 0x10564
That again agrees with our expectations! In addition we can see what is in that variable:
(gdb) p myvar1
$\$ 4=3$

Perfect. This was as expected since in this example we set zero as the initial value of myvar1 and then stored the number 3 there in this last instruction.

Now let us run until the end.

```
(gdb) continue
Continuing.
[Inferior 1 (process 2899) exited with code 07]
```

Which is, of course, the return code we wanted.

Projects

1. Step through more instructions of our program.
2. Download some manuals or quick reference cards from the web for future use. Look up other commands for gdb.
3. Look at memory locations in the . data section.
4. The ability to set breakpoints in gdb is very helpful. Note that when we give the disassemble command we see on the left the addresses of the commands. In later work we will call on C functions for such things as reading and writing and we will not want to stepi through the code for those functions when debugging our code. By setting breakpoints we can have the debugger stop right after performing the action and see what's in the registers or memory. Try setting and removing breakpoints from your code.

5 Branching

Until now our small assembler programs execute one instruction after the other. If our ARM processor were only able to run this way it would be of limited use. It could not react to existing conditions which may require different sequences of instructions. That is the purpose of the branch instructions.

5.1 A special register

In Chapter 2 we learned that our Raspberry Pi 2 ARM processor has 16 integer general purpose registers and we also said that some of them play special roles in our program. We deliberately ignored which registers were special as it was not relevant at that time.

But now it is relevant, at least for register $r 15$. This register is very special, so special it also has another name: pc. It is unlikely that you see it termed r15 since it is confusing (although correct from the point of view of the ARM architecture). From now on we will only use pc to name it.
pc stands for Program Counter. In general, the pc register (sometimes called the instruction pointer in other architectures like the 386 or x86_64) contains the address of the next instruction expected to be executed.

When the ARM processor executes an instruction, two things may happen during its execution. If the instruction does not modify the pc (and most instructions do not), the pc is just incremented by 4 (as if we did add pc, pc, \#4). Why 4? Because in the ARM architecture, instructions are 32 bits or 4 bytes wide, and so there are 4 bytes between every two instruction addresses. If the instruction modifies the pc then the new value for the pc is used to address the next instruction instead.

Once the processor has fully executed an instruction, it uses the value in the pc as the address for the next instruction to execute. This way, an instruction that does not modify the pc will be followed by the next contiguous instruction in memory (since it has been automatically increased by 4). This is called implicit sequencing of instructions: after one has run, usually the next one in memory runs. But if an instruction does modify the pc ; for instance to a value other than $\mathrm{pc}+4$, then we can be running a different instruction of the program. This process of changing the value of pc is called
branching. In our processor this done using branch instructions.

5.2 Unconditional branches

You can tell the processor to branch unconditionally by using the instruction b (for Branch) and a label. Consider the following program.

```
/* -- branch01.s */
.text
.global main
main:
    mov r0, #2 @ r0 <- 2
    b end @ branch to 'end'
    mov r0, #3 @ r0 <- 3
end:
    bx lr
```

If you execute this program you will see that it returns an error code of 2 .

```
$ ./branch01 ; echo $?
```

2

What happened is that instruction b end branched (modifying the pc register) to the instruction at the label end, which is bx lr, the instruction we execute at the end of our program. This way the instruction mov r0, \#3 was not actually executed at all (the processor jumped over that instruction).

At this point the unconditional branch instruction b may look a bit useless but that is not the case. In fact this instruction is essential in some contexts; in particular, when linked with conditional branching. But before we can talk about conditional branching we need to talk about conditions.

5.3 Conditional branches

If our processor were only able to branch when we put the unconditional branch b in our program, it would not be very useful. It is much more useful to branch when some condition is met. So a processor should be able to evaluate some sort of conditions.

Before continuing, we need to unveil another register called the cpsr (for Current Program Status Register). This register is a bit special and directly modifying it is out of the scope of this chapter. That said, it keeps some values that can be read and updated when executing an instruction. The contents of that register include four condition code bits, called flags, named \mathbf{N} (Negative), Z (Zero), \mathbf{C} (Carry) and \mathbf{V} (oVerflow). These
four condition code flags are usually read by branch instructions. Arithmetic instructions and special testing and comparison instructions can update these condition codes too if requested.

The semantics of these four condition codes in instructions updating the cpsr are roughly the following:
\mathbf{N} Will be enabled ($\mathrm{N}==1$) if the result of the instruction yields a negative number and will be disabled $(\mathrm{N}==0)$ otherwise.

Z Will be enabled $(\mathrm{Z}==1)$ if the result of the instruction yields a zero value and will be disabled $(\mathrm{Z}==0)$ if nonzero.

C Will be enabled if the result of the instruction is a value that requires a 33 rd bit to be fully represented. For instance an addition that overflows the 32 bit range of integers. There is a special case for C and subtractions where a non-borrowing subtraction enables it, and it is disabled otherwise: subtracting a larger number from a smaller one enables C , but it will be disabled if the subtraction is done in the other order.

V Will be enabled if the result of the instruction yields a value that cannot be represented in 32 bit two's complement form and will be disabled otherwise.

So we have all the pieces needed to perform branches conditionally. But first, let's start comparing two values. We use the instruction cmp, standing for CoMPare, for this purpose.

```
cmp r1, r2 /* updates the cpsr by doing "r1 - r2",
    but r1 and r2 are not modified */
```

This instruction subtracts the value in the second register from the value in the first register setting the flags as appropriate. Consider the following examples of what could happen in the comparison instruction above?

- If $r 2$ had a value (strictly) greater than $r 1$ then N would be enabled because r1-r2 would yield a negative result.
- If r1 and r2 had the same value, then Z would be enabled because r1-r2 would be zero.
- If r1 was 1 and $r 2$ was 0 then r1-r2 would not borrow, so in this case C would be enabled. If the values were swapped (r1 was 0 and $r 2$ was 1) then C would be disabled because the subtraction does borrow.
- If r1 was 2147483648 (the largest positive integer in 32 bit two's complement) and r1 was -1 then r1-r2 would be 2147483649 but such a number cannot be represented in 32 bit two's complement, so V would be enabled to signal this.

The following mnemonics are available to help us use the condition codes in the cpsr:
$\mathbf{E Q}$ (equal) When Z is enabled (Z is 1)
NE (not equal) When Z is disabled (Z is 0)
GE (greater than or equal in two's complement) When both V and N are enabled or disabled (V is N)

LT (lower than in two's complement) This is the opposite of GE, so when V and N are not both enabled or disabled (V is not N)

GT (greater than in two's complement) When Z is disabled and N and V are both enabled or disabled (Z is $0, \mathrm{~N}$ is V)

LE (less than or equal in two's complement) When Z is enabled or if not that, N and V are both enabled or disabled (Z is 1 . If Z is not 1 then N is V)

MI (minus/negative) When N is enabled (N is 1)
PL (plus/positive or zero) When N is disabled (N is 0)
VS (overflow set) When V is enabled (V is 1)
VC (overflow clear) When V is disabled (V is 0)
HI (higher) When C is enabled and Z is disabled (C is 1 and Z is 0)
LS (lower or same) When C is disabled or Z is enabled (C is 0 or Z is 1)
CS/HS (carry set/higher or same) When C is enabled (C is 1)
$\mathbf{C C} / \mathrm{LO}$ (carry clear/lower) When C is disabled (C is 0)
These conditions can be appended to our b instruction to generate new instructions. Thus, beq will branch only if Z is 1 (enabled); bne will branch only if Z is 0 (disabled); etc. If the condition of a conditional branch is not met, then the branch is ignored and the next instruction will be run. It is the programmer's task to make sure that the condition codes are properly set prior to a conditional branch.

```
/* -- compare01.s */
.text
.global main
main:
5 mov r1, #2 @ r1<- 2
6 mov r2, #2 @ r2 <- 2
7 cmp r1, r2 @ update cpsr condition codes with r1-r2
```

```
8 beq case_equal @ branch to case_equal only if Z = 1
case_different:
    mov r0, #2 @ r0 <- 2
    b end @ branch to end
case_equal:
    mov r0, #1 @ r0 <- 1
end:
    bx lr
```

If you run this program it will return an error code of 1 because both r1 and r2 have the same value. Now change mov r1, \#2 in line 5 to be mov r1, \#3 and the returned error code should be 2 . Note that after case_different we do not want to run the case_equal instructions, thus we have to branch to end (otherwise the error code would always be $1)$.

Projects

1. Try out every one of the above mnemonics in the compare01 program with different values for the immediate values!
2. Consider what you have to do if you want to change your code from using GE to LT.
3. There is a bal instruction which stands for Branch ALways. Compare it with b and try to give a reason for its existence.
4. In addition to the cmp instruction, the ARM has other compare-like instructions. One example is cmn which is CoMpare Negative. Investigate the use of this and other test-like instructions.

6 Control structures

In the previous chapter we learned about branch instructions. They are really powerful tools because they allow us to express control structures. Structured programming is an important milestone in better computing engineering so being able to map all the usual structured programming constructs in assembler, in our processor, is a Good Thing ${ }^{\text {TM }}$.

6.1 If, then, else

This is one of the most basic control structures. In fact, we already used this structure in the previous chapter. Consider the following structure, where E is an expression and S1 and S2 are statements (they may be compound statements like \{ SA; SB; SC; \})
if (E) then
S1
else
S2

A possible way to express this in ARM assembler could be the following

```
if_eval:
    /* Assembler that evaluates E and updates the cpsr accordingly */
bXX else_part /* Here XX is the appropriate condition */
then_part:
    /* assembler code for S1, the "then" part */
    b end_of_if
else_part:
    /* assembler code for S2, the "else" part */
end_of_if:
```

If there is no else_part statement, we can replace bXX else_part with bYY end_of_if and omit the b end_of_if and the next two lines.

6.2 Loops

This is another basic control structure in structured programming. While there are several types of loops, actually all can be reduced to the following structure.

```
while (E)
    S
```

Supposedly S executes some instructions so than E eventually becomes false and the loop is left. Otherwise we would stay in the loop forever (sometimes this is what you want but not in our examples). A way to implement these loops is as follows.

```
while_condition:
    /* assembler code to evaluate E and update cpsr */
    bXX end_of_loop /* If E is false, leave the loop right now */
    /* assembler code for the statement S */
    b while_condition /* Unconditional branch to the beginning */
end_of_loop:
```

A common loop involves iterating over a single range of integers, as in

```
for (i = L; i < N; i += K)
    S
```

But this is nothing but

```
i = L;
while (i < N)
{
            S;
            i += K;
}
```

So we do not have to learn a new way to implement the loop itself.

$6.31+2+3+4+\cdots+22$

As a first example let's sum all the numbers from 1 to 22 (it will be explained shortly why we chose 22). The result of the sum is 253 (check it with a calculator). Of course it makes little sense to compute something the result of which we know already, but this is just an example.

```
01 /* -- loop01.s */
02 .text
03 .global main
```

```
04 main:
05 mov r1, #0 @ r1<- 0
06 mov r2, #1 @ r2 <- 1
07 loop:
08 cmp r2, #22 @ compare r2 and 22
0 9 ~ b g t ~ e n d ~ @ ~ b r a n c h ~ i f ~ r 2 ~ > ~ 2 2 ~ t o ~ e n d
10 add r1, r1, r2 @ r1 <- r1 + r2
11 add r2, r2, #1 @ r2 <- r2 + 1
12 b loop
13 end:
14 mov r0, r1 @ r0 <- r1
15 bx lr
```

Here we are counting from 1 to 22 . We will use register $r 2$ as the counter. As you can see in line 6 we initialize it to 1 . The sum will be accumulated in register r1 and at the end of the program we move the contents of $r 1$ into r0 to return the result of the sum as the error code of the program (we could have used r0 in all the code and avoided this final mov but we think it might be clearer this way).

In line 8 we compare r2 (remember, that is the counter that will go from 1 to 22) to 22. This will update the cpsr so that we can check in line 9 if the comparison was such that $r 2$ was greater than 22 . If this is the case, we end the loop by branching to end. Otherwise we add the current value of $r 2$ to the current value of r1 (remember, in r1 we accumulate the sum from 1 to 22).

Line 11 is an important one. We increase the value of $r 2$, because we are counting from 1 to 22 and we already added the current counter value in r2 to the result of the sum in r1. Then at line 12 we branch back at the beginning of the loop. Note that if line 11 was not there we would hang as the comparison in line 8 would always be false and we would never leave the loop in line 9 !

```
$ ./loop01; echo $?
253
```

Now you could change the value in line 8 and try the program with, say, $\# 100$. The result should be 5050 .

```
$ ./loop01; echo $?
186
```

What happened? Well, it happens that in Raspbian the error code of a program is a number from 0 to 255 (8 bits). If the result is 5050 , only the lower 8 bits of the number are used. 5050 in binary is 1001110111010 , its lower 8 bits are 10111010 which is exactly 186. How can we check that the computed r1 is 5050 before ending the program? Let's use gdb and display the first 9 instructions with disassemble.

```
$ gdb loop01
(gdb) start
Temporary breakpoint 1 at 0x8390
Starting program: /home/RPiA/chapter07/loop01
Temporary breakpoint 1, 0x00008390 in main ()
(gdb) disas main,+(9*4)
Dump of assembler code from 0x8390 to 0x83b4:
    0x00008390 <main+0>: mov r1, #0
    0x00008394 <main+4>: mov r2, #1
    0x00008398 <loop+0>: cmp r2, #100 ; 0x64
    0x0000839c <loop+4>: bgt 0x83ac <end>
    0x000083a0 <loop+8>: add r1, r1, r2
    0x000083a4 <loop+12>: add r2, r2, #1
    0x000083a8 <loop+16>: b 0x8398 <loop>
    0x000083ac <end+0>: mov r0, r1
    0x000083b0 <end+4>: bx lr
End of assembler dump.
```

Now that we know exactly where the instruction mov r0, r1 is, we may tell gdb to stop at 0 x 000083 ac , right before executing that instruction. Here's how to do it:

```
(gdb) break *0x000083ac
(gdb) cont
Continuing.
Breakpoint 2, 0x000083ac in end ()
(gdb) disas
Dump of assembler code for function end:
=> 0x000083ac <+0>: mov r0, r1
    0x000083b0 <+4>: bx lr
End of assembler dump.
(gdb) info register r1
r1 0x13ba 5050
```

Great, this is what we expected. r1 actually contains 5050 but we could not see it due to the limit in the size of the error code.

Maybe you have noticed that something odd happens with our labels being identified as functions. We will address this issue in a future chapter, but it is mostly harmless here.

$6.43 n+1$

Let's consider a bit more complicated example. This will be the famous $3 \mathrm{n}+1$ problem (also known as the Collatz conjecture). Given a number n we will divide it by 2 if it is even and multiply it by 3 and add one if it is odd.

```
if (n % 2 == 0)
    n = n / 2;
else
    n = 3*n + 1;
```

Before continuing, we should note that our ARM processor is able to multiply two numbers together but we would have to learn about a somewhat complicated new instruction (mul) which would detour us a bit. Instead we will use the following identity $3 n=2 n+n$. We learned how to multiply or divide by two in Appendix B (using shifts).

The Collatz conjecture states that, for any number n, repeatedly applying this procedure will eventually give us the number 1. Theoretically it could happen that this is not the case: that there is a number for which the procedure never reaches 1 . So far, no such number has been found, but it has not been proven that one does not exist. If we want to apply the previous procedure repeatedly, our program is to do something like this.

```
n = ...;
while (n != 1)
{
    if (n % 2 == 0) n = n / 2;
    else n = 3*n + 1;
}
```

If the Collatz conjecture were false, there would exist some n for which the code above would hang, never reaching 1 . But as we said, no such number has been found.

```
1 /* -- collatz.s */
2 .text
3 .global main
4 \text { main:}
5 mov r1, #123 @ r1 <- 123 a trial number
6 mov r2, #0 @ r2 <- 0 the # of steps
loop:
8 cmp r1, #1 @ compare r1 and 1
9 beq end @ branch to end if r1 == 1
1 0
11 and r3, r1, #1 @ r3 <- r1 & 1 [mask]
12 cmp r3, #0 @ compare r3 and 0
13 bne odd @ branch to odd if r3 != 0
```

```
14 even:
15 mov r1, r1, ASR #1 @ r1 <- (r1 >> 1) [divided by 2]
16 b end_loop
1 7 \text { odd:}
18 add r1, r1, r1, LSL #1 @ r1 <- r1 + (r1 << 1) [3n]
19 add r1, r1, #1 @ r1 <- r1 + 1 [3n+1]
20
21 end_loop:
22
23
24
25 end:
26 mov r0, r2 @ number of steps
27 bx lr
```

In r1 we will keep the current value of the number n. In this case we will start with the number 123. 123 reaches 1 in 46 steps: [123, 370, 185, 556, 278, 139, 418, 209, 628, $314,157,472,236,118,59,178,89,268,134,67,202,101,304,152,76,38,19,58,29$, $88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1]$. We will count the number of steps in register $r 2$. So we initialize $r 1$ with 123 and $r 2$ with 0 (no step has been performed yet).

At the beginning of the loop, in lines 8 and 9 , we check if $r 1$ is 1 . We compare it to 1 and if they are equal we leave the loop by branching to end.

Now that we know that r1 is not 1, we proceed to check if it is even or odd. To do this we use a new instruction which performs a bitwise and operation. An even number will have its least significant bit (LSB) equal to 0 , while an odd number will have the LSB equal to 1 . So a bitwise and using the mask $\# 1$ will return 0 or 1 indicating even or odd numbers, respectively. In line 11 we keep the result of the bitwise and in register r3 and then, in line 12, we compare it to 0 . If it is not zero we branch to the label odd, otherwise we continue on to the even case.

Now some magic happens in line 15 . This is a combined operation that ARM allows us to do. This is a mov but we do not move the value of r1 directly to r1 (which would be doing nothing) but first we apply the operation Arithmetic Shift Right (ASR) to the value of $r 1$ (to the value, not changing the register itself). Then this shifted value is moved to the register r1. As described in Appendix B, an arithmetic shift right shifts all the bits of a register to the right: the rightmost bit is effectively discarded and the leftmost is set to the same value as the leftmost bit prior the shift. Shifting a number right one bit is the same as dividing that number by 2 . So this mov r1, r1, ASR \#1 is actually doing the integer operation r1 <- r1/2; .

Some similar magic happens for the even case in line 18. In this case we are doing an add. The first and second operands must be registers (destination operand and the first
source operand). The third operand (the second source operand) is combined with a Logical Shift Left (LSL). The value of the operand is shifted left 1 bit: the leftmost bit is discarded and the rightmost bit is set to 0 . This is effectively multiplying the value by 2 . So we are adding $r 1$ (which holds the value of n) to $2^{*} r 1$. This is $3^{*} r 1$, so $3 * n$. We keep this value in $r 1$ again. In line 19 we add 1 to that value, so $r 1$ ends up having the value $3 n+1$ that we wanted.

In the next chapter we will treat the shift operators LSL and ASR in more detail.
Finally, at the end of the loop, in line 22 we update r2 (remember it keeps the counter of our steps) and then we branch back to the beginning of the loop. Before ending the program we move the counter to r0 so we return the number of steps we used to reach 1.
\$./collatz; echo \$?
46

Projects

1. Look up the original definition of the IF statement in FORTRAN. Since it had no else clause, show how the unconditional branch (b) was necessary. Comment on how that translates into the goto statement whose existance was highly criticized in software engineering circles. Note that Java, while it does not have a goto statement, reserves the word so that it cannot be used as an identifier but is kept just in case there is such a statement added to the language someday.
2. Rewrite the if_eval: code in our first example so that the else clause precedes the if clause.
3. Note that both the while and the for statements test the condition before performing the loop body. Compare that to the until statement that always tries to perform the loop body at least once. Note that the original construct in FORTRAN always performed the body at least once, even if the condition failed. Rewrite a general until statement using a while statement instead.
4. Try out the Collatz conjecture with some larger numbers. Do you think you can start with any number?
5. Can you think of any reason not to use r0 to hold the count in code collatz.s? If not, rewrite the code and test it.

Postscript

Kevin Millikin rightly pointed that usually a loop is not implemented in the way shown above. He recommends a better way to do the loop of loop01.s as follows.

```
1 /* -- loop02.s */
2 .text
3 .global main
4 main:
5 mov r1, #0 @ r1<- 0
6 mov r2, #1 @ r2<- 1
7 b check_loop @ unconditionally jump to end of loop
loop:
9 add r1, r1, r2 @ r1 <- r1 + r2
10 add r2, r2, #1 @ r2 <- r2 + 1
1 1 \text { check_loop:}
12 cmp r2, #22 @ compare r2 and 22
13 ble loop @ if r2 <= 22 goto beginning of loop
14 end:
15 mov r0, r1 @ r0 <- r1
16 bx lr
```

If you count the number of instruction in the two codes, there are 9 instructions in both. But if you look carefully at Kevin's proposal you will see that by unconditionally branching to the end of the loop, and reversing the condition check, we can skip one branch thus reducing the number of instructions of the loop itself from 5 to 4 . One of the recommendations for good programming practices in any language has always been to have as few instructions within a loop as possible.

There is another advantage of this second version, though: there is only one branch in the loop itself as we resort to implicit sequencing to reach again the two instructions performing the check. For reasons beyond the scope of this chapter, the execution of a branch instruction may negatively affect the performance of our programs. Processors have mechanisms to mitigate the performance loss due to branches (and in fact the processor in the Raspberry Pi does have them). However, avoiding a branch instruction entirely avoids the potential performance penalization of executing a branch instruction.

While we do not care very much now about the performance of the code our assembler emits, we will return to this question when we look at pipelining. However, it is worth starting to think about that problem.

7 Addressing modes

The ARM architecture has been targeted for embedded systems. Embedded systems usually end up being used in massively manufactured products (dishwashers, mobile phones, TV sets, etc.). In this context margins are very tight so a designer will always try to use as few components as possible (a cent saved in hundreds of thousands or even millions of appliances may pay off). One relatively expensive component is memory although every day memory is less and less expensive. Anyway, in constrained memory environments being able to save memory is good and the ARM instruction set was designed with this goal in mind. It will take us several chapters to learn all of these techniques. In this chapter we will start with one feature usually named shifted operand.

7.1 Indexing modes

We have seen that, except for load (ldr), store (str) and branches (b and bXX), ARM instructions take as operands either registers or immediate values. We have also seen that the first operand is usually the destination register (where str is a notable exception as there it plays the role of source because the destination is now the memory). The instruction mov has another operand, a register or an immediate value. Arithmetic instructions like add and logical instructions like and (and many others) have two source registers, the first of which is always a register and the second can be a register or an immediate value.

These sets of allowed operands in instructions are collectively called indexing modes. This concept will look a bit unusual since we will not index anything. The name indexing makes sense in memory operands but ARM instructions, except load and store, do not have memory operands. This is the nomenclature you will find in ARM documentation so it seems sensible to use theirs.

We can summarize the syntax of most of the ARM instructions in the following pattern

```
instruction Rdest, Rsource1, source2
```

There are some exceptions, mainly move (mov), branches, loads and stores. In fact move is not so different actually.
mov Rdest, source2

Both Rdest and Rsource must be Registers. In the next section we will talk about source2.

We will discuss the indexing modes of load and store instructions in the next chapter. Branches, on the other hand, are surprisingly simple and their single operand is just a label in our program, so there is little to discuss on indexing modes for branches.

7.2 Shifted operand

What is this mysterious source2 in the instruction patterns above? As you recall, in the previous chapters we have used registers or immediate values. So at least source2 can be one of these: a register or an immediate value. You can use an immediate or a register where a source2 is expected. Some examples follow, but we have already used them in the examples of previous chapters.

```
mov r0, #1
mov r1, r2
add r3, r4, r5
add r6, r7, #4
```

But source2 can be much more than just a simple register or an immediate. In fact, when it is a register we can combine it with a shift operation. We already saw one of these shift operations in Chapter 6 in the Collatz program. Now it is time to unveil all of them.

LSL \#n Logical Shift Left. Shifts bits n times left. The n leftmost bits are lost and the n rightmost are set to zero.

LSL Rsource3 Like the previous one but instead of an immediate value the lower byte of the register specifies the amount of shifting.

LSR \#n Logical Shift Right. Shifts bits n times right. The n rightmost bits are lost and the n leftmost bits are set to zero,

LSR Rsource3 Like the previous one but instead of an immediate value the lower byte of the register specifies the amount of shifting.

ASR \#n Arithmetic Shift Right. Like LSR but the leftmost bit before shifting is used instead of zero in the n leftmost ones.

ASR Rsource3 Like the previous one but instead of an immediate value the lower byte of the register specifies the amount of shifting.

ROR \#n ROtate Right. Like LSR but the n rightmost bits are not lost but pushed onto the n leftmost bits

ROR Rsource3 Like the previous one but instead of an immediate value the lower byte of the register specifies the amount of shifting.

In the listing above, n is an immediate integer between 1 and 31 . These extra operations may be applied to the value in the second source register (to the value, not to the register itself) so we can perform some more operations in a single instruction. For instance, ARM does not have any shift right or left instructions. You just use the mov instruction.
mov r1, r1, LSL \#1 @ Shifts r1 left 1 bit

You may be wondering why one would want to shift left or right the value in a register. If you recall Appendix B we saw that shifting left (LSL) a value gives a value that the same as multiplying it by 2 . Conversely, shifting it right (ASR if we use two's complement, LSR otherwise) is the same as dividing by 2. A shift of n is the same as doing n shifts of 1 , and so actually multiplies or divides a value by 2^{n}.

```
mov r1, r2, LSL #1 @ r1 <- (r2*2)
mov r1, r2, LSL #2 @ r1 <- (r2*4)
mov r1, r3, ASR #3 @ r1 <- (r3/8)
mov r3, #4
mov r1, r2, LSL r3 @ r1 <- (r2*16)
```

We can combine these operations with add to get some useful cases.

```
add r1, r2, r2, LSL #1 @ r1 <- r2 + (r2*2) equivalent to r1 <- r1*3
add r1, r2, r2, LSL #2 @ r1 <- r2 + (r2*4) equivalent to r1 <- r1*5
```

You can do something similar with sub (obviously SUBtract).

```
sub r1, r2, r2, LSL #3 /* r1 <- r2 - (r2*8)
equivalent to r1 <- r2*(-7) */
```

ARM comes with a handy rsb (Reverse SuBstract) instruction which let us avoid moving values around in the registers by computing Rdest <- source2 - Rsource1 (compare it to sub which computes Rdest <- Rsource1 - source2).

```
rsb r1, r2, r2, LSL #3 /* r1 <- (r2*8) - r2
    equivalent to r1 <- r2*7 */
```

Here is another example, a bit more contrived:

```
/* Complicated way to multiply the initial
        value of r1 by 42 = 7*3*2 */
rsb r1, r1, r1, LSL #3 @ r1 <- (r1*8) - r1 equivalent to r1 <- 7*r1
add r1, r1, r1, LSL #1 @ r1 <- r1 + (2*r1) equivalent to r1 <- 3*r1
add r1, r1, r1 @ r1 <- r1 + r1 equivalent to r1 <- 2*r1
```

You are probably wondering why would we want to use shifts to perform multiplications. Well, the generic multiplication instruction always works but it is usually much harder to compute by our ARM processor so it may take more time. There are times when there is no other option but for many small constant values a few simple instructions using shifts may be more efficient.

Rotations are less useful than shifts in everyday use. They are usually used in cryptography, to reorder bits and "scramble" them. ARM does not provide a way to rotate left but we can do n rotates left by doing $32-n$ rotates right.

```
/* Assume r1 is 0x12345678 */
```

mov r1, r1, ROR \#4 @ r1 <- r1 ror 4. This is r1 <- 0x81234567
mov r1, r1, ROR \#28 @ r1 <- r1 ror 28. This is r1 <- 0x23456781

Projects

1. Look up the ARM documentation concerning a Logical Shift Left (lsl) operation. Try using that instruction in your code. Using gdb, find out what machine instruction is actually emitted by the assembler. Compare lsl r0, \#1 with mov r0, r0, lsl \#1.
2. What happens if you give a number greater than 31 as the immediate value in a shift or rotate?
3. Using immediates between $n=1$ and $n=8$, what values can you obtain with the instruction add r1, r1, r1, LSL n ?
4. What values in addition to 42 can you obtain by repeated adds or subtracts with shifts limited to $n=1$ to $n=7$?

8 Arrays and structures

In the previous chapter we saw that the second source operand of most arithmetic instructions can use a shift operator which allows us to shift and rotate bits. In this chapter we will learn about additional indexing modes available to ARM instructions. This time we will focus on load and store instructions.

8.1 Arrays and structures

So far we have been able to move 32 bits from memory to registers (load) and back to memory (store). But working on single items of 32 bits (usually called scalars) is a bit limiting. Soon we would find ourselves working on arrays and structures, even if we did not know their names.

An array is a sequence of items of the same kind in memory. Arrays are a fundamental data structure in almost every low level language. Every array has a base address, usually denoted by the name of the array. Each of its items has associated with it an index, usually ranging from 0 to $N-1$ when the array contains N items. Using the base address and the index we can access an item of the array. We mentioned in Chapter 3 that memory could be viewed as an array of bytes. An array in memory is the same, except an item may take more than one single byte.

A structure (or record or tuple) is a sequence of items of possibly different kinds. Each item of a structure is usually called a field. Fields do not have an associated index but an offset with respect to the beginning of the structure. Structures are laid out in memory in an array that ensures that the proper alignment is used in every field. The base address of a structure is the address of its first field. If the base address is aligned, the structure should be laid out in a way that all the field are properly aligned as well.

What do arrays and structure have to do with indexing modes of load and store? Well, these indexing modes are designed to make accessing arrays and structures easier.

8.2 Defining arrays and structs

To illustrate how to work with arrays and structures we will use the following C declarations and implement them in assembler.

```
int a[100];
struct my_struct
{
    char f0;
    int f1;
} b;
```

Let's first define in our assembler the array "a". It is just 100 integers. An integer in ARM is 32 -bits wide so in our assembler code we must make room for exactly 400 bytes ($4 * 100$).

```
1 /* -- array01.s */
2 .data
3 a: .skip 400
```

In line 3 we define the symbol "a" and then we make room for 400 bytes. The directive . skip tells the assembler to advance the given number of bytes before emitting the next datum. Again, we are skipping 400 bytes because our array of integers takes 400 bytes (4 bytes per each of the 100 integers). Declaring a structure is not much different.

```
4 b: .skip 8
```

Right now you should wonder why we skipped 8 bytes when the structure itself takes just 5 bytes. Well, it does need only 5 bytes to store useful information. The first field f 0 is a char. A character takes one byte of storage. The next field $f 1$ is an int. An integer takes 4 bytes but it must be aligned at a 4 byte boundary as well, so we have to leave 3 unused bytes between the field $f 0$ and the field $f 1$. This unused storage is inserted just to have the correct alignment is called padding. The bytes within padding should never be used by your program.

8.3 Naive approach without indexing modes

Now let's write some code to initialize every item of the array a[i]. We will do something equivalent to the following C code.

```
for (i = 0; i < 100; i++) a[i] = i;
5 .text
6 .global main
main:
8 ldr r1, =a @ r1 <- &a
```

```
9 mov r2, #0 @ r2 <- 0
1 0
Loop:
11 cmp r2, #100 @ Have we reached 100 yet?
1 2 \text { beq end @ If so, leave the loop}
13 add r3, r1, r2, LSL #2 @ r3 <- r1 + (r2*4)
14 str r2, [r3] @ *r3 <- r2
15 add r2, r2, #1 @ r2 <- r2 + 1
16 b Loop @ Goto beginning of the Loop
1 7 \text { end:}
18 bx lr
```

We are using many things we learned in earlier chapters. In line 8 we load the base address of the array into r1. The address of the array will not change so we load it once. In register r2 we will keep the index that will range from 0 to 99 . In line 11 we compare it to 100 to see if we have reached the end of the loop.

Line 13 is the interesting one. Here we compute the address of the item. We have in $r 1$ the base address and we know each item is 4 bytes wide. We know also that r2 keeps the index of the loop which we will use to access the array element. Given an item with index i its address must be \&a $+4 * i$, since there are 4 bytes between every two elements of this array. Thus, we are storing the address of the current element into r3 at this step of the loop. In line 14 we store $r 2$, which is i, into the memory pointed to by $r 3$, that is the i-th array item: a[i]. We then proceed to increment r2 and branch back for the next step of the loop.

As you can see, accessing an array involves calculating the address of the accessed item. The ARM instruction set provide a more compact way to do this. In fact, it provides several indexing modes to automate this frequently used process.

8.4 Indexing modes

In the previous chapter the concept of indexing mode was unnatural because we were not indexing anything. Now it makes much more sense since we are indexing an array item. ARM provides nine of these indexing modes. We will distinguish two types of indexing modes: non-updating and updating depending on whether the side-effect of updating the index takes place.

8.4.1 Non-updating indexing modes

1. [Resource1, \#土immediate]

It just adds (or subtracts) the immediate value to form the address. This is very useful for array items the index of which is a constant in the code or fields of a structure, since their offset is always constant. In Rsource1 we put the base
address and in immediate the offset we want in bytes. The immediate cannot be larger than 12 bits (0..4095). When the immediate is $\# 0$ it is just like the usual addressing we have been using: [Rsource1].

For example, we can set a [3] to 3 this way (we assume that r1 already contains the base address of a). Note that the offset is in bytes so we need an offset of 12 (4 bytes $* 3$ items skipped). Important! $r 1$ is not changed!

```
mov r2, #3 @ r2 <- 3
str r2, [r1, #+12] @ *(r1 + 12) <- r2
```

2. [Rsource1, \pm Rsource2]

This is like the previous one, but the added (or subtracted) offset is the value in a register. This is useful when the offset is too big for the immediate. Note that for the + Rsource 2 case, the two registers can be swapped (as this would not affect the address computed).

Example: The same as above but using a register this time.

```
mov r2, #3 @ r2 <- 3
mov r3, #12 @ r3 <-12
str r2, [r1, +r3] @ *(r1 + r3) <- r2
```


3. [Rsource1, \pm Rsource2, shift_operation $\# \pm$ immediate]

This one is similar to the usual shift operation we can do with other instructions. A shift operation (remember: LSL, LSR, ASR or ROR) is applied to Rsource2, Rsource1 is then added (or subtracted) to the result of the shift operation applied to Rsource2. This is useful when we need to multiply the address by some fixed amount. When accessing the items of the integer array a we had to multiply the result by 4 to get a meaningful address.

For this example, let's first recall how we computed above the address in the array of the item in position $r 2$.

```
13 add r3, r1, r2, LSL #2 @ r3 <- r1 + r2*4
14 str r2, [r3] @ *r3 <- r2
```

We can express this in a much more compact way (without the need of the register $r 3)$. Note that register $r 2$ is not changed.
str $\mathrm{r} 2,[\mathrm{r} 1,+\mathrm{r} 2, \mathrm{LSL} \# 2] \quad @ *(r 1+r 2 * 4)<-r 2$

8.4.2 Updating indexing modes

In these indexing modes the Rsource 2 register is updated with the address synthesized by the load or store instruction. You may be wondering why one would want to do this. A bit of detour first. Recheck the code where we load the array. Why do we have to keep around the base address of the array if we are always effectively moving 4 bytes away from it? Would not it make much more sense to keep the address of the current entity? So instead of

```
13 add r3, r1, r2, LSL #2 @ r3 <- r1 + r2*4
14 str r2, [r3] @ *r3 <- r2
```

we might want to do something like (r1 contains the current address):

```
str r2, [r1] @ *r1 <- r2
add r1, r1, #4 @ r1 <- r1 + 4
```

because there is no need to compute every time from the beginning the address of the next item as we are accessing them sequentially. Even if this looks slightly better, it still can be improved a bit more. What if our instruction were able to update r 1 for us? Something like this (obviously the exact syntax is not as shown)

```
/* Illegal syntax but potentially one instruction */
```

str r2, [r1] "and then" add r1, r1, \#4

Such indexing modes exist. There are two kinds of updating indexing modes depending on at which time Rsource1 is updated. If Rsource1 is updated after the load or store itself (meaning that the address to load or store is the initial Rsource1 value) this is a post-indexing accessing mode. If Rsource1 is updated before the actual load or store (meaning that the address to load or store is the final value of Rsource1) this is a pre-indexing accessing mode. In all cases, at the end of the instruction Rsource1 will have the value of the computation of the indexing mode. Now this may sound a bit convoluted, but just look in the example above: we first load using r1 and then we do the instruction $r 1<-r 1+4$. This was post-indexing: we first use the value of r1 as the address where we store the value of $r 2$. Then $r 1$ is updated with $r 1+4$. Now consider another hypothetical syntax.
/* Illegal syntax but potentially one instruction */ add r1, r1, \#4 "and then" str r2, [r1]

This was pre-indexing: we first compute r1 +4 , store it in $r 1$, and then use it as the address where we store the value of $r 2$. At the end of the instruction r1 has effectively been updated as before, but the updated value has already been used as the address of the load or store.

8.4.3 Post-indexing modes

1. [Rsource1], \# \pm immediate

The value of Rsource1 is used as the address for the load or store. Then Rsource1 is updated with the value of immediate after adding (or subtracting) it to (or from) Rsource1. Using this indexing mode we can rewrite the loop of our first example as follows:

16 loop:

17 cmp r2, \#100 @ Have we reached 100 yet?

```
18 beq end @ If so: leave loop; not: continue
19 str r2, [r1], #+4 @ *r1 <- r2 then r1 <- r1 + 4
20 add r2, r2, #1 @ r2 <- r2 + 1
21 b loop @ Go to the beginning of the loop
end:
```


2. [Rsource1], \pm Rsource 2

Like the previous one but instead of an immediate, the value of Rsource2 is used. As usual this can be used as a workaround when the offset is too big for the immediate value (it must be less than 4096).
3. [Rsource1], \pm Rsource2, shift_operation \# $\#$ immediate

The value of Rsource1 is used as the address for the load or store. Then a shift operation (LSL, LSR, ASR or ROL) is applied to Rsource2. The resulting value of that shift is added (or subtracted) to (or from) Rsource1. Rsource1 is finally updated with this last value.

8.4.4 Pre-indexing modes

Pre-indexing modes may look a bit weird at first but they are useful when the computed address is going to be reused soon. Instead of recomputing it we can reuse the updated Rsource1. Mind the! symbol in these indexing modes which distinguishes them from the non-updating indexing modes.

1. [Rsource1, \# \pm immediate]!

This mode behaves like the similar non-updating indexing mode but Rsource1 gets updated with the computed address before being used. Imagine we want to compute $\mathrm{a}[3]=\mathrm{a}[3]+\mathrm{a}[3]$. We could do that as follows (we assume that r1 already has the base address of the array):

```
ldr r2, [r1, #+12]! @ r1 <- r1 + 12 then r2 <- *r1
add r2, r2, r2 @ r2 <- r2 + r2
str r2, [r1] @ *r1 <- r2 : r1 now = address of a[3]
```

2. [Rsource1, \pm Rsource2]!

Similar to the previous one but using a register Rsource2 instead of an immediate.
3. [Rsource1, \pm Rsource2, shift_operator $\# \pm$ immediate]!

Like the non-indexing equivalent but Rsource 2 will first be updated with the address used for the load or store instruction.

8.5 Back to structures

All the examples in this chapter have used an array. Structures are a bit simpler: the offset to the fields is always constant: once we have the base address of the structure (the address of the first field) accessing a field is just an indexing mode with an offset (usually an immediate). Our current structure features, on purpose, a char as its first field f0. Currently we cannot work on scalars in memory of different size than 4 bytes. So we will postpone working on that first field until a later chapter.

Now imagine that we wanted to increment the field $f 1$ like this (in C):
b.f1 = b.f1 + 7;

If $r 1$ contains the base address of our structure, accessing the field $f 1$ is pretty easy now that we have all the indexing modes available.

```
1 ldr r2, [r1, #+4]! @ r1 <- r1 + 4 and then r2 <- *r1
2 add r2, r2, #7 @ r2 <- r2 + 7
3 str r2, [r1] @ *r1 <- r2 where r1 has the correct address
```

Note that we use a pre-indexing mode to keep in r1 the address of the field $f 1$. That way the second store does not need to compute that address again.

8.6 Strings

We have assumed that it was obvious that the declaration char $\mathrm{f0}$; in our C code meant that an ASCII character was intended. We must also mention that the ARM implementation of the equivalent assembler code f0: skip \#1 leaves room for a single byte and is intended to hold a single character that can be referenced by $f 0$.

A string is an array of characters. Each character takes one byte of memory and so has a unique address. The string, as an array, is addressed in memory by the address of its first character.

Some of the functions we use from the C library take the address of a string (the first character or byte) in r0. For example, if we declare the string S by

S: .asciz "This is a string"
we have reserved 17 bytes of memory and initialized them to the string This is a string followed by a zero or null byte ($0 x 00$) that terminates the string for C functions. If we load the address of the string in r0 by
ldr r0, =S
then the call

```
bl puts
```

on the C function puts will print out the string on our terminal. We will start to use strings in the next chapter.

Projects

1. Try out all the possible indexing modes.
2. Define
```
struct mystruct2
{
    int f1;
    char f0;
} b;
```

similar - but significantly different from mystruct in Section 8.2. How many bytes are necessary to store b? (b: .skip ?)

9 Functions

In previous chapters we learned the foundations of ARM assembler: registers, some arithmetic operations, loads and stores and branches. Now it is time to put everything together and add another level of abstraction to our assembler skills: functions. Why functions? Functions are a way to reuse code. If we have some code that will be needed more than once, being able to reuse it is a Good Thing © . That way, we only have to ensure once that the code being reused is correct. If we tried to repeat the code in many programs we should verify it is correct at every point. That clearly would not scale. Functions can also get parameters. That way not only do we reuse code but we can use it in several ways, by passing different parameters. All this magic, though, comes at some price. A function must be a well-behaved citizen.

9.1 Do's and don'ts of a function

Programming in assembler gives us a lot of power. But with a lot of power also comes a lot of responsibility. We can break lots of things in assembler, because we are at a very low level. Errors and nasty things may happen. In order to make all functions behave in the same way, there are conventions in every environment that dictate how a function must behave. Since we are using a Raspberry Pi running the Raspbian operating system, we will use the AAPCS (ARM Architecture Procedure Call Standard) but chances are that other ARM operating systems like RISCOS or Windows RT follow it. You may find documentation in the ARM website but we will try to summarize it in this chapter.

9.1.1 New specially named registers

When discussing branches we learned that r15 was also called pc and we never called it r15 anymore. Let's rename r14 as lr and r13 as sp from now on. lr stands for Link Register and it is the address of the instruction following the instruction that called us (we will see later how this is used). sp stands for Stack Pointer. The stack is an area of memory owned only by the current function, the sp register stores the top address of that stack. The reader should be familiar with stacks from experience with high-level languages such as C/C++/Java. However, for now, let's put the stack aside. We will get it back in the next chapter.

9.1.2 Passing parameters

Functions can receive parameters. The first 4 parameters must, if it is to follow convention, be stored sequentially in the registers $r 0, r 1, r 2$ and $r 3$. You may be wondering how to pass more than 4 parameters. We can, of course, but we need to use the stack, but we will discuss it in Chapter 11. Until then, we will only pass up to 4 parameters.

9.1.3 Well behaved functions

A function must adhere, at least, to the following rules if we want it to be AAPCS compliant.

- A function should not make any assumption about the contents of the cpsr. So, when we enter a function the condition codes $\mathrm{N}, \mathrm{Z}, \mathrm{C}$ and V are unknown.
- A function can freely modify registers r0, r1, r2 and r3.
- A function cannot assume anything about the contents of r0, r1, r2 and r3 unless they are playing the role of a parameter.
- A function can freely modify lr but the value upon entering the function will be needed when leaving the function (so such value must be kept somewhere if changed within the function).
- A function can modify all the remaining general purpose registers as long as their values are restored before leaving the function. This includes sp and registers r4 to r11. That means that, after calling a function, we have to assume that (only) registers r0, r1, r2, r3, lr and pc may have been overwritten and changed.

9.1.4 Calling a function

There are two ways to call a function. If the function is statically known (meaning we know exactly which function is being called) we will use the bl label command. bl stands for Branch and Link. That label must be a label defined in the .text section. This is called a direct (or immediate) call. We may do indirect calls by first storing the address of the function into a register and then using the blx Rsource1 command.

In both cases the behavior is as follows: The address of the instruction following the bl or blx instruction is copied into the lr register. The address of the function (immediately encoded in the bl or using the value of the register in blx) is stored in the pc which means we branch to that function's code.

9.1.5 Leaving a function

A well behaved function, as stated above, will have to keep the initial value of 1 lr somewhere if it is changed during processing of the function - for example, if it calls on
another (or the same) function. When leaving the function, we will retrieve that value and put it in some register RXX (it can be lr again but that is not mandatory). Then we will give the command bx RXX (we could use blx as well but the latter would update blr which is useless here). Of course we would have ensured that all the registers that must be preserved have their correct values before returning.

9.1.6 Returning data from functions

Functions should use r0 for a datum that fits in 32 bits (or less). Those are C types such as: char, short, int, long (and float though we have not seen floating point yet) and they will be returned in r0. For basic types of 64 bits, such as C types long long and double, they will be returned in r1 and r0. Any other data are returned through the stack unless they are 32 bits or less, in which case they will be returned in r0. This now makes sense. C's main returns an int, which is used as the value of the error code of our program.

9.2 Hello world

Usually this is the first program you write in any high level programming language. In our case we had to learn lots of things first. Anyway, here it is. A "Hello world" in ARM assembler.
(Note to experts: since we will not discuss the stack until the next chapter, this code may look very dumb to you)

```
1 /* -- hello01.s */
.data
3
greeting:
    .asciz "Hello world"
6
.balign 4
return: .word 0
9
10 .text
1 1
12 .global main
13 main:
14 ldr r1, =return @ r1 <- &return
1 5
16
17 ldr r0, =greeting @ r0 <- &greeting
18
    str lr, [r1] @ *r1 <- lr
@ First parameter of puts
1 9
```

```
bl puts @ Call to puts
    @ lr <- address of next instruction
    ldr r1, =return @ r1 <- &return
    ldr lr, [r1] @ lr <- *r1
    bx lr @ return from main
27 /* External */
28 .global puts @ The C function puts
```

26

We are going to call the puts function. That function is defined in the C library and has the following prototype: int puts(const char*). From that we see that it receives, as its first (and only) parameter, the address of a C-string (that is, an array of ASCII characters, terminated by the zero [0x00] byte). When executed it outputs that string to stdout (so it should appear by default on our terminal). Finally it returns (in r0 of course) an integer containing the number of bytes written.

We start by defining in the .data section the label greeting in lines 4 and 5. That label will contain the address of our greeting message. GNU as provides a convenient .asciz directive for that purpose. That directive emits ASCII characters of as many bytes as are needed to represent the string plus a final zero or null byte. We could have used another directive, . ascii, as long as we explicitly added the final zero byte.

After the bytes of the greeting message, we make sure the next label will be 4 bytes aligned and we define a label return in line 8 . This is place where we finally really need to be careful about alignment. In that label we will keep the value of lr that we have received from main. As stated above, this is a requirement for a well behaved function: to be able to retrieve the original value of $1 r$ that it had upon entering. Since we will change lr when we call on puts, we must save it somewhere. Therefore, we reserve some room for it.

The first two instructions, lines 14 and 15 , of our main function keep the value of 1 r in that return variable defined above. Then in line 17 we prepare the arguments for the call to puts. We load the address of the greeting message into the r0 register. That register will hold the first (and only) parameter of puts. Then in line 20 we call the function. Recall that bl will put in $1 r$ the address of the instruction following it (that is the instruction in line 23). That is the reason why we copied the value of 1 r into a variable at the beginning of the main function, because it was going to be overwritten by this bl.

When puts runs, the message is printed on the stdout (our terminal). Next we must get the initial value of lr so we can return successfully from main. Finally, we return.

Is our main function well behaved? Yes, it keeps and restores $1 r$ before leaving. It only modifies registers r0 and r1. We can assume that puts is behaved as well, so everything should work fine. In addition, we have the bonus of seeing how many bytes have been
written to the output.

```
$ ./hello01
Hello world
$ echo $?
12
```

Note that "Hello world" is just 11 bytes (the final zero is not counted as it just plays the role of a terminating byte) but the program returns 12. This is because puts always adds a newline byte, which accounts for that extra byte.

9.3 Real interaction!

Now that we have the power to call functions, we can glue them together. Let's use the C functions scanf and printf to read a number and then print it back to the standard output using the C compiler to achieve our purpose. The scanf has prototype int scanf(const char *format, ...); while the printf has prototype int printf (const char $*$ format , ...) so in each case the first parameter is the address of the format string.

```
    1 /* -- printf01.s */
    2 .data
    3
    4 /* First message */
    5 .balign 4
    6 message1: .asciz "Hey, type a number: "
    7
    8 /* Second message */
    9 .balign 4
10 message2: .asciz "I read the number %d\n"
1 1
12 /* Format pattern for scanf */
13 .balign 4
14 scan_pattern : .asciz "%d"
15
16 /* Where scanf will store the number read */
17 .balign 4
18 number_read: .word 0
1 9
20 .balign 4
21 return: .word 0
22
23 .text
24
```

25 .global main
26 main:

27	ldr r1, =return	@ r1 <- \&return
28	str lr, [r1]	@ *r1 <- lr ; save return address
29		
30	ldr r0, =message1	© r0 <- \&message1
31	bl printf	@ call to printf
32		
33	ldr r0, =scan_pattern	@ r0 <- \&scan_pattern
34	ldr r1, =number_read	@ r1 <- \&number_read
35	bl scanf	@ call to scanf
36		
37	ldr r0, =message2	© r0 <- \&message2
38	ldr r1, =number_read	@ r1 <- \&number_read
39	ldr r1, [r1]	© r1 <- *r1
40	bl printf	@ call to printf
41		
42	ldr r0, =number_read	@ r0 <- \&number_read
43	ldr r0, [r0]	© r0 <- *r0
44		
45	ldr lr, =return	© lr <- \&return
46		© $\mathrm{lr}<-* \operatorname{lr}$
47	bx lr	© return from main using lr
48		
49 /* External */		
50 .global printf		
51	obal scanf	

In this example we will ask the user to type a number and then we will print it back. We also return the number in the error code, so we can check twice if everything goes as expected. For the error code check, make sure your number is lower than 255 (otherwise the error code will show only its lower 8 bits).
\$./printf01 ; echo \$?
Hey, type a number: $124<C R>$
I read the number 124
124

9.4 Our first function

Let's define our first function. We will extend the previous example by multiplying the number by 5 .

14 .balign 4

```
15 return2: .word 0
16
17 .text
18
19 /* mult_by_5 function */
20 mult_by_5:
21 ldr r1, =return2 @ r1 <- &return2
22 str lr, [r1] @ *r1 <- lr
23
24 add r0, r0, r0, LSL #2 @ r0 <- r0 + 4*r0
25
26 ldr lr, =return2 @ lr <- &return2
27 ldr lr, [lr] @ lr <- *lr
28 bx lr @ return to main using lr
```

This function will need another "return" variable like the one main uses. But this is only for the sake of the example. Actually this function does not call another function. When that happens it does not need to keep lr as no bl or blx instruction is going to modify it. If the function wanted to use lr as the general purpose register r14, the process of keeping the value would then be mandatory.

As you can see, once the function has computed the value, it is enough to keep it in r0. In this case it was pretty easy and a single instruction was enough.

The whole example follows.

```
1 /* -- printf02.s */
2 .data
3
4 .balign 4 @ First message
5 message1: .asciz "Hey, type a number: "
6 .balign 4 @ Second message
7 message2: .asciz "%d times 5 is %d\n"
8.balign 4 @ Format pattern for scanf
scan_pattern: .asciz "%d"
10 .balign 4 @ Where scanf will store the number read
11 number_read: .word 0
12 .balign 4
13 return: .word 0
14 .balign 4
return2: .word 0
16
17 .text
18
19 /* mult_by_5 function */
```

20 mult_by_5:
21 ldr r1, =return2
str lr, [r1]
add r0, r0, r0, LSL \#2
ldr lr, =return2
ldr lr, [lr]
bx lr
29
30 .global main
31 main:
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 /* External */
57 .global printf
58 .global scanf
ldr r0, [r0]
bl mult_by_5
mov r2, r0
ldr r1, =number_read
ldr r1, [r1]
@ $r 1<-$ \&return2
© $* r 1<-\operatorname{lr}$
@ r0 <- r0 + 4*r0
@ lr <- \&return2
© $\operatorname{lr}<-* \operatorname{lr}$
@ return to main using lr
@ r1 <- \&return
@ *r1 <- lr
@ r0 <- \&message1
© call to printf
© r0 <- \&scan_pattern
@ r1 <- \&number_read
@ call to scanf
@ r0 <- \&number_read
@ $\mathrm{r} 0<-* r 0$
@ r2 <-r0
© r1 <- \&number_read
@ $r 1<-* r 1$
@ r0 <- \&message2
© call to printf
@ lr <- \&return
© $\operatorname{lr}<-* \operatorname{lr}$
@ return from main using lr

Notice lines 46 to 49 . There we prepare the call to printf which receives three parameters: the format and the two integers referenced in the format. We want the first integer be the number entered by the user. The second one will be that same number multiplied by 5. After the call to mult_by_5, r0 contains the number entered by the
user multiplied by 5 . We want it to be the third parameter so we move it to $r 2$. Then we load the value of the number entered by the user into r1. Finally we load in r0 the address to the format message of printf. Note that here the order of preparing the arguments of a call is not relevant as long as the values are correct at the point of the call. We use the fact that we will have to overwrite r0, so for convenience we first copy r0 to r2.
\$./printf02
Hey, type a number: 1234<CR>
1234 times 5 is 6170

9.5 Unified Assembler Language

As we write functions in the future, we will find that an efficient programming technique is to divide up the processes we wish to encode into individual functions that perform, if possible, just one of the needed operations. We can then test each part of the program separately and when we are done have many useful, already tested, functions to use in other programs. This technique is called Functional Programming.

One problem arises when we combine many well-tested functions into one larger program: repeated use of the same label. Looking ahead we see programs with loops and often the label loop:. Other common labels are exit:, error:, and next:. If we use the same label in different functions, we will get an assembler error.

A modern syntax called Unified Assembler Language (UAL) allows for numerical labels that may be repeated throughout a program.

The syntax is to add the directive . syntax unified as in the following trivial example:

```
/* -- numericalLabels.s */
    .global main /* entry point must be global */
    .syntax unified /* modern syntax (UAL=Unified Assembler Language) */
    .text
    main: /* This is main */
        push {r4, lr}
        ldr r0, =message1
        bl puts
        b 1f /* Goto the first label 1 forward */
        b 2f /* Goto the first label 2 forward */
1:
        ldr r0, =message2
        bl puts
1:
    mov r0, 43 /* The # is optional in UAL */
```

```
    pop {r4, pc} /* Return from main */
2:
    ldr r0, =errmessage
    bl puts
    b 1b /* Goto the first label 1 backward */
.data
message1: .asciz "Numerical Label Test\n"
message2: .asciz "Success\n"
errmessage: .asciz "Failure!\n"
.global puts
```


Projects

1. Simplify the rest of the comments in the above example.
2. Write some other simple functions and test them. In particular, include some functions that operate on strings (Section 8.6).
3. Interchange lines 5 and 8 in hello01.s and show that there is no need for extra alignment. Does this give a general rule for more efficient coding? Can you think of any disadvantages of doing that?
4. Look up details of the prototypes for such functions as printf and scanf. Justify what is placed in the registers r0 and r1.
5. There are many other C functions we may use in the same way as printf and scanf. Look up their prototypes and write simple programs using them.
6. The .data sections in both printf01.s and printf02.s have many unnecessary .align statements. Rewrite them without any such statements. [Hint: .word before .asciz.]
7. Try out the UAL syntax and look up more information about it.

10 Searching and Sorting

We now have enough background to program some more complicated functions in assembler. One very important need is to be able to search through a file of information to find a particular item. In general, we look for a key which is a unique identifier such as a social security number. If a file has N elements in it, on average it will take $N / 2$ accesses to find the key if the file is randomly arranged. We will first consider the Binary Search that finds a key in a sorted list in about $\log _{2}(N)$ accesses which is a great improvement for large files. Having seen that improvement, we will then consider methods of sorting files so that the Binary Search can be performed.

10.1 Binary Search

Having the list sorted allows us to use the Binary Search method to find the key. At each stage we cut in half the number of places at which the key could appear. Since that can only happen about $\log _{2} N$ times, even in the case where the key does not appear, this method is far superior to a sequential search (particularly for large values of $N)$. Should the list contain $2^{20}=1,048,576$ elements, at worst 21 accesses would be necessary rather than an average of 524,288 when it appears in the unsorted list and $1,048,576$ when it does not appear in the list.

Our code follows directly from some $\mathrm{C} / \mathrm{C}++/$ Java code such as

```
int binary_search(int[] array, int size, int key)
{ int low = 0, high = size - 1;
    while( low <= high)
    {int mid = (low + high) / 2;
            if( array[ mid ] < key )
                low = mid + 1;
            elseif( key < array[ mid ] )
                high = mid -1;
            else
                return mid;
    }
    return NOT_FOUND;
}
```

Since the input of the values is not significant in this example, we will "hard-wire" into our code the list of integers using the . word directive. The line
array: .word $2,5,11,23,47,95,191,383,767,998$
both reserves 10 words in memory labeled by the name "array", but also initializes those words to the given values.

```
@ BinarySearch.s
2 ©
3 @ Demonstrates binary search on a fixed list of integers
4 .data @ Data declaration section
5 return: .word 0
6 array: .word \(2,5,11,23,47,95,191,383,767,998\)
7 num_read: .word 0
8 prompt: .asciz "\nInsert integer key (key < 0 to quit): "
9 scanFMT: .asciz "\%d" @ Format pattern for scanf
10 echo: .asciz "\nYou entered: \%d\n"
11 ymsg: .asciz "\nKey was found at position \%d\n"
12 nmsg: .asciz "\nKey not found! a near index is: \%d\n"
13
14 .text @ Start of code section
15 .global main
16 main:
17 ldr r1, =return @ r1 <- \&return
18 str lr, [r1] @ *r1 <- lr save return address
19
20 input:
21 ldr r0, =prompt @ r0 <- \&prompt
22 bl puts @ Print prompt
23
24 ldr r0, =scanFMT @ r0 <- \&scanFMT
25 ldr r1, =num_read @ r1 <- \&num_read
26 bl scanf @ Call to scanf; puts value in num_read
27 @echo
28 ldr r0, =echo
29 ldr r1, =num_read
30 ldr r1, [r1]
31 bl printf @ echo the key
32
33 @check sentinal
34 ldr r1, =num_read @ r1 <- \&num_read
35 ldr r 1, [r1] @ \(1<-* r 1\)
36 cmp r1, \#0 @ Look for sentinal (negative)
37 blt exit @ quit if num_read is negative
```

38

46	cmp	r1, r0	@ test high - low
47	blt	fail	@ while (low <= high)
48	@get middle		
49	add	r3, r0, r1	@ r3 <- low + high
50	mov	r3, r3, ASR \#1 @ r3 <- r3 / $2=$ mid	
51	mov	r8, r3	@ save index for printing
52	add	r5, r7, r3, LSL \#2 @ r5 <- \&array [4*mid]	
53	ldr	r5, [r5]	@ r5 <- array[4*mid]
54	cmp	r5, r6	@ test array[4*mid] - key
55	blt	RH	@ if (array[4*mid] < key)
56	bgt	LH	@ if (array[4*mid] > key)

found
$58 \mathrm{RH}:$ add r0, r3, \#1 @ low $=$ mid +1 (index)
59 b Loop
$60 \mathrm{LH}:$ sub $\mathrm{r} 1, \mathrm{r} 3$, \#1 @ high $=$ mid - 1 (index)
61 b Loop

62 @ found
63 found:
64 add 1 1, r8, \#1 @ get index in normal count

65 ldr r0, =ymsg
66 bl printf @ Print yes message
67
68 b input @ begin again
69
70 @ not found
71 fail:
72 add r1, r8 , \#1 @ get index in normal count
73 ldr r0, =nmsg
74 bl printf @ Print not found message
75
76 b input @ try again!
77 @ exit
78 exit:

79	$l d r$	$r 1$, ereturn	@ $r 1<-\& r e t u r n$
80	$l d r$	$\operatorname{lr},[r 1]$	@ $\operatorname{lr}<-* r 1$ saved return address
81	bx	lr	

82
83 /* External */
84 .global puts
85 .global printf
86 .global scanf
As often happens in moving from $\mathrm{C} / \mathrm{C}++/ \mathrm{Java}$ to assembler, we must take special pains to distinguish between indexes in the high level language and memory addresses (4 bytes to each word). In particular, in line 52 we shift left two places in order to multiply by four thus counting in words instead of bytes. In addition, we have to watch for alignment problems.

10.2 Insertion Sort

There are many algorithms for sorting arrays. Details can be found in any Data Structures text. The "best" ones run in asymptotic time proportional to $N \log _{2} N$, where N is the size of the array. That is, as N gets large, the time to sort the data grows as a constant times the factor $N \log _{2} N$. The criteria for being "best", however, differ widely. One can consider the worst case or the average case or other situations. In fact the entire idea of "best" is rather meaningless when the answer is given in terms of asymptotic time since real data sets, while large, are not infinite.

A particular example of a sorting algorithm that works well for small data sets is the insertion sort. While its worst case behavior grows as N^{2} (as does its average case behavior), for sets which are small its simplicity makes it better than complicated algorithms that require extensive machinery to work and the corresponding extra time needs to be amortized over large data sets to achieve their purported $N \log _{2} N$ behavior. In fact, insertion sort will achieve a performance proportional to N if the data happens to be almost sorted already (which is often the case).

Here is a complete program that takes input from the keyboard for a change, sorts it using the insertion sort algorithm, and then prints out the sorted array:

```
/* -- isort.s **********************
    * Demonstrates insertion sort *
    **************************************/
    .text
    .global main
main:
@@@@@@@@@@@@@@@@@ INITIALIZE
    ldr r7, =return @ get ready to save
    str lr, [r7] @ link register for return
    mov r6, #0 @ keep count in r6
    ldr r4, =array @ keep constant &array in r4
```

```
@@@@@@@@@@@@@@@@@ INPUT
input:
    ldr r0, =prompt
    bl puts
    ldr r0, =scanFMT @ r0 <- &scan format
    ldr r1, =number @ r1 <- &number
    bl scanf @ call to scanf
    ldr r1, =number
    ldr r1, [r1]
    cmp r1, #0 @ look for sentinel (negative)
    blt isort @ goto isort function
    add r0, r4, r6, LSL #2 @ r0 <- &array[4*count]
    str r1, [r0] @ array[4*count] <- number
    add r6, r6, #1 @ count = count + 1
    b input
@@@@@@@@@@@@@@@@@ ISORT
/*
@@ sort the integers
@ C/C++/Java Code:
@ null insertion(int[] a, int n)
@ { for (int i = 1; i < n; i++)
@ { temp = a[i];
@ j = i-1;
@ while (j >= 0 && temp < a[j])
@ { a[j+1] = a[j];
@ j = j-1;
@ }
@ a[j+1] = temp;
@ }
@ }
@@
*/
isort:
    mov r0, r4 @ r0 <- &array (a)
    mov r1, r6 @ r1 <- count = length (n)
@
        mov r2,#1 @ i = 1
    iloop: @ for-loop as while loop
        cmp r2, r1 @ i - n
        bge iloopend @ i >= n => loopend
```

```
    add r10, r0, r2, LSL #2 @ temp = &array[4*i]
    ldr r10, [r10] @ temp = array[4*i]
    sub r3, r2, #1 @ j = i - 1
    jloop: @ while-loop
    cmp r3, #0 @ j >= 0 ?
    blt jloopend
    add r9, r0, r3, LSL #2 @ r9 <- &array[4*j]
    ldr r9, [r9] @ r9 <- array[4*j]
    cmp r10, r9 @ temp < array[4*j] ?
    bge jloopend
    add r8, r0, r3, LSL #2
    add r8, r8, #4 @ r8 <- &array[4*(j+1)]
    str r9, [r8] @ a[j+1] <- a[j]
    sub r3, r3, #1 @ j <- j - 1
    b jloop
    @ end jloop
    jloopend:
    add r3, r3, #1 @ j <- j+1
    add r8, r0, r3, LSL #2 @ r8 <- &array[4*(j+1)]
    str r10, [r8] @ a[j+1] <- temp
    add r2, r2, #1 @ i++
    b iloop
    @ end iloop
    iloopend:
@ end isort
@@@@@@@@@@@@@@@@ OUTPUT
output:
    ldr r0, =result
    bl puts
    mov r5, #0 @ r5 counter
ploop: cmp r6, r5 @ n - counter
    ble exit @ done printing
    add r3, r4, r5, LSL #2 @ r3 <- &array[4*counter]
    ldr r1, [r3] @ r1 <- array[4*counter]
    ldr r0, =printFMT @ r0 <- &print format
    bl printf
    add r5, r5, #1 @ n++
    b ploop
@@@@@@@@@@@@@@@@ EXIT
exit:
    mov r0, r6 @ r0 = r6 return code = n
    ldr r1, =return @ r1 <- &return
    ldr lr, [r1] @ lr <- *r1 saved return address
    bx lr
```

```
@@@@@@@@@@@@@@@@@
.data
number: .word 0 @ place to hold input number
array: .space 100 @ room for 25 integers = 100 bytes
return: .word 0 @ place for return address of main
prompt: .asciz "Input a positive integer (negative to quit): "
result: .asciz "Sorted, those integers are: \n"
scanFMT: .asciz "%d"
printFMT: .asciz " %d\n"
@@@@@@@@@@@@@@@@
/* External */
.global printf
.global scanf
.global puts
```

The actual assembler code follows the C/C++/Java code rather closely. Again, the most frequent error in this type of program is to confuse indices with addresses. In particular, when using integer data from an array, one must carefully watch for places where an increment or decrement must be 4 (bytes) rather than 1 (word) as in $i++;$, $i+=1 ;$, or $i=i+1$;

Notice how the inclusion of shifts in ARM instructions allows for a easy change from index to address (multiple of four).

10.3 Random Numbers

Simulations are an important part of system design. Before building a million dollar piece of equipment, such as a switching network, it is customary to write a computer program that would simulate the operation of the device to see if it has a chance of satisfying the constraints imposed on it. For the example of a switching network that would mean simulate the arrival of millions of calls at various times and see if the system seems to handle the load. For this purpose, large numbers of "random" numbers must be generated to simulate the "random" arrival of calls.

Let us generate an array of "random" numbers that might be used as test data for some other program. For more information about "random" numbers, see Knuth, Chapter 3 (Volume 2) and the Projects. Here is some code:

```
/* -- rand.s
    rand.s gives us an array of 100 pseudo-random numbers
        in the range 0<= n < 100 based on Knuth's advice.
    X[n+1] <- (aX[n] + c) mod m
```

```
    using m = 2^16 = 65536 which works on a 16-bit machine well
    using a = 32445 so that a mod 8 = 5 and 99m/100 > a > m/100
    using c = 1
    using X0 = 31416 in r0 as seed (could be input)
*/
.text
.global main
main:
    ldr r1, =return @ save return address
    str lr, [r1]
/* ldr r0, #31416 @ X0 - initialized (could be input) */
    mov r0, #0x7a
    mov r0, r0, LSL #8
    add r0, r0, #0x68 @ X0 = r0 = 0x7a68 = 31416
/* ldr r4, #32445 @ a - initialized */
    mov r4, #0x7e
    mov r4, r4, LSL #8
    add r4, r4, #0xbd @ a = r4 = 0x7ebd = 32445
/* ldr r5, #0x0000FFFF @ mask to do modulo (m-1) - initialized */
    mov r5, #0xFF
    mov r5, r5, LSL #8
    add r5, r5, #0xFF @ mask = m-1 = 0x0000FFFF
    ldr r6, #396 @ counter - initialized 4*100-4 for 100 ints
    ldr r7, #100 @ limit - initialized so values 0-99
Loop: @ while counter < 100
        cmp r6, #0 @ check counter
        blt Exit @ Stop when counter passes zero
        mul r0, r0, r4 @ X = aX (mul works like this)
        add r0, #1 @ now X = aX+c
        and r0, r0, r5 @ now X = (aX+c) mod m
        mov r8, r0 @ save X in r8 temporarily
        lsr a0, a0, 8 @ divide by 256 (use upper 8 bits)
        cmp a0, r7 @ check size
        bge Loop @ only want those < 100
    @Print
        ldr r0, =format
    mov r1, r8 @ prepare to print
    bl printf
    @Store
        mov r0, r8 @ put X back
        ldr r1, =list @ prepare to store
        str r0, r1, [r6 -#4] @ store and then decrement counter
@End_of_Loop
```

```
    b Loop
Exit:
    ldr lr, =return
    lrd lr, [lr] @ standard return to OS
    bx lr
@
.data
list: .space 400 @ room for 100 integers
return: .word 0 @ save return address
format: .asciz " %d "
@
/* External */
.global printf
```

When we run this code we find 100 integers stored in array in the reverse order to which they were printed (for no obvious reason). While they may look somewhat "random", they obviously cannot be truly random numbers since we will get exactly the same results every time we run this code! Again it is suggested that a careful reading of Knuth's material would be helpful and will justify a recommendation that any random number generator a programmer uses (including those in expensive packages) should be tested as much as possible.

Note that the loads during the initialization of main are carried out in three steps rather than the commented out one instruction. If one tries to assemble the obvious instruction ldr r0, \#31416, one gets an error message of some kind. On the Raspberry Pi it not only gives the error message but also explains what number (in hex) it was unable to put in the part of the ldr - immediate machine instruction that stores the number. With the three instructions shown, we can obtain the desired result. You will investigate immediate operands in a project.

10.4 More Debugging

Now that our programs are much more complicated, it is harder and harder to debug them. There are a few additional helpful things gdb can do to assist us.

For example, the gdb command $\mathrm{x} / \mathrm{Nuf}$ expression, where x stands for eXamine, will display the contents of N units (u) of memory (where units could be b for byte or w for word - four bytes) and f gives the format (which could be x for hexadecimal, c for character, u for unsigned decimal, and some others) at the location described by the expression.

Another important help is the ability to set breakpoints that are locations at which execution will stop and wait for the user to do whatever will give them information about the registers and memory at that point of the program. They are set by the
command break line or break function (and other methods) where the line is a line number from the original program and function is a label.

We now see why, in Chapter 1, we called on the assembler as with the parameter -g. That asked the assembler to keep all the debugging information available for gdb to be able to work with the original source code.

Projects

1. The isort.s code has been written in a form where it is obvious that the actual sorting code could have been separated out as a function taking the address of the array and its length as parameters (in r0 and r1). Rewrite the code in that way.
2. Looking at the ASCII table in Appendix A, notice the values of the different characters. Modify the isort.s code to act on the characters in a string.
3. There are many obvious inefficiencies in the programs given as examples in this chapter. Improve some of the obvious ones.
4. Rewrite rand.s so that it takes input from the user as the first "seed". Run many tests of the rand program with different seeds.
5. Expand the usefulness of rand by allowing the user to pick the range of values returned by the program and also how many values it returns.
6. Save the results from rand by calling the program using ./rand > data.dat and work on the file data.dat that is created.
7. Make the data file data.dat the input to the isort program by calling it with ./isort < data.dat > sorted.dat and check the results in the file sorted.dat. Note that you must append a negative number to the end of data.dat to signal the end of input to isort.
8. Practice using gdb to watch what is an array as the program runs. Set some breakpoints to get snapshots of what is in the various registers as the program progresses. Note that labels are treated a function names by the debugger.
9. Try other three instruction loads similar to those used in rand.s. Using gdb, watch the behavior of the memory locations.
10. Investigate how i mmediate operands are formed by looking at detailed documentation.

11 Recursion and the Stack

In Chapter 9 we were introduced to functions and we saw that they have to follow a number of conventions in order to articulate with other functions. We also briefly mentioned the stack as an area of memory owned solely by the function. In this chapter we will consider the stack in more depth and indicate why it is important for functions.

11.1 Dynamic activation

One of the benefits of functions is being able to call them more than once. But that more than once hides a small trap. We are not restricting who will be able to call the function, so it might happen that it is the same function that calls itself. When this happens we call it recursion.

The idea of a recursive function, one that may call on itself, is paradoxical for many reasons. Many programmers consider recursion a difficult concept but actually it is often so simple that it should be used for rapid prototyping (quickly writing some possibly poor code which can be used to demonstrate a system). Some of the most basic methods of software engineering are based on recursion.

A typical example of recursion is calculating the factorial of a number n, usually written as $n!$. It is defined on the non-negative integers by the mathematical formula

$$
\begin{aligned}
& 0!=1 \text { and } \\
& \mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)!\text { for } \mathrm{n}>0
\end{aligned}
$$

Recursive code for the function factorial can immediately be written in C as follows:

```
int factorial(int n)
{
    if (n == 0) return 1;
    return n * factorial(n-1);
}
```

This example is characteristic of recursive function translation from mathematical definition to high-level language. If a function is given in recursive form the translation is almost automatic. Of course one should be careful to check that the original definition
is correct and should note restrictions on the type and range of input variables. In our factorial example the function is only correctly defined for non-negative integers.

A recursive definition of a function always includes some base cases which, for some reason, are so trivial that their values are known or can be calculated without further recursion. The recursive cases, on the other hand, must make some progress toward the base cases. This means that the arguments for the recursive call are usually smaller in some sense (possibly smaller sets rather than always smaller integers). All our examples will be such that they are independent of the language we use.

Note that there is only one function factorial, but it may be called several times. For instance: factorial(3) \rightarrow factorial(2) \rightarrow factorial(1) \rightarrow factorial(0), where \rightarrow means "calls". A function, thus, is dynamically activated each time it is called. The span of a dynamic activation goes from the point where the function is called until it returns. At a given time, more than one function can be dynamically activated. The whole dynamic activation set of functions includes the current function and the dynamic activation set of the function that called it (the current function).

We now have a function that calls itself. That would not be a problem if it weren't for the rules that a function must observe. Let's quickly recall them.

- Only r0, r1, r2 and r3 can be freely modified.
- The lr value at the entry of the function must be kept somewhere because we will need it to leave the function (to return to the caller).
- All other registers r4 to r11 and sp may be modified but they must be restored to their original values upon leaving the function.

In Chapter 9 we used a global variable to save lr. But if we attempted to use a global variable in our factorial(3) example, it would be overwritten at the next dynamic activation of factorial. We would only be able to return from factorial(0) to factorial(1). After that we would be stuck in factorial(1), as lr would always have the same value.

So it looks like we need some way to keep at least the value of lr for each dynamic activation. And not only lr; if we wanted to use registers from r4 to r11 we would also need to keep them somehow for each dynamic activation. Clearly, global variables would not be enough either. This is where the stack comes into play.

11.2 The stack

In computing, a stack is a data structure (a way to organize data that provides some interesting properties). A stack typically has two basic operations: push information onto the top of the stack and pop information from the top of the stack. Depending on the context (for example, if you are not managing the stack yourself), you can only
access the top of the stack. In our case we will easily be able to access more elements than just the top. That's because we are programming in assembler.

But, what is the stack? We already said in Chapter 9 that the stack is a region of memory owned solely by the function. We can now reword this a bit better: the stack is a region of memory owned solely by the current dynamic activation. And how do we control the stack? Well, in Chapter 9 we said that the register sp stands for Stack Pointer. This register will contain the address of (point to) the top of the stack. The region of memory owned by the dynamic activation is the extent of bytes contained between the current value of sp and the initial value that sp had when the function was called. We will call that region the local memory of a function (more precisely, of a dynamic activation of it). We will put there whatever has to be saved at entry into a function and restored before leaving. We will also keep there the local variables of a function (dynamic activation) which also must be removed upon exit from the function.

Our function also has to adhere to some rules when handling the stack.
The stack pointer (sp) must always be 4 byte aligned. This is absolutely mandatory. However, due to the Procedure Call Standard for the ARM architecture (AAPCS), the stack pointer will have to be 8 byte aligned, otherwise funny things may happen when we call what the AAPCS terms public interfaces (that is, code written by other people). The value of sp when leaving the function should be the same value it had upon entering the function. The first rule is consistent with the alignment constraints of ARM, where most times addresses must be 4 byte aligned. Due to AAPCS we will stick to the extra 8 byte alignment constraint. The second rule states that, no matter how large our local memory is, it will always disappear when we return from the function. This is important, because local variables of a dynamic activation must not have any storage assigned after that dynamic activation ends. Otherwise, repeated function calls would fill up the stack and cause the program to fail.

It is a convention how the stack, and thus the local memory, has its size defined. The stack can grow upwards or downwards. If it grows upwards it means that we have to increase the value of the sp register in order to enlarge the local memory. If it grows downwards we have to do the opposite, the value of the sp register must be decreased by as many bytes as the size of the local storage. In our Raspberry Pi under Raspbian, the stack grows downwards, towards zero (although it never should reach zero). Addresses of local variables have very large values in the 32 bit range. They are usually close to 2^{32}.

Another convention when using the stack concerns whether the sp register contains the address of the top of the stack or some bytes above. In Raspian, the sp register directly points to the top of the stack: in the memory addressed by sp there is useful information.

We will now assume that the stack grows downwards and the address of top of the
stack must always be in sp. Clearly, to enlarge the local memory it should be enough to decrease sp. The local memory is then defined by the range of memory from the current sp value to the original value that sp had at the beginning of the function.

One register we almost always have to keep is lr. Let's see how we can save it in the stack.

```
sub sp, sp, #8 @ sp <- sp - 8. This enlarges the stack by 8 bytes
str lr, [sp] @ *sp <- lr
... << Code of the function >> ...
ldr lr, [sp] @ lr <- *sp
add sp, sp, #8 @ sp <- sp + 8. This reduces the stack by 8
    @ bytes, restoring the stack
    @ pointer to its original value
bx lr @ return
```

A well behaved function may modify sp but must ensure that at the end it has the same value it had when we entered the function. That is what we did here. We first subtracted 8 bytes from sp and at the end we added back the 8 bytes.

This sequence of instructions would do adequately. But maybe you remember Chapter 8 and the indexing modes that you could use in load and store. Note that the first two instructions behave exactly like a preindexing. We first update sp and then we use sp as the address where we store lr. This is exactly a preindex mode! Likewise for the last two instructions. We first load lr using the current address of $s p$ and then we decrease sp. This is exactly a postindex mode! The usual way to accomplish our objective is the following:

```
str lr, [sp, #-8]! @ preindex: sp <- sp - 8; *sp <- lr
... << Code of the function >> ...
ldr lr, [sp], #+8 @ postindex; lr <- *sp; sp <- sp + 8
bx lr
```

Yes, those addressing modes were invented to support these sorts of things. Using a single instruction is better in terms of code size. This may not seem relevant, but it is when we realize that the stack bookkeeping is required in almost every function we write!

11.3 Factorial

Let's implement the factorial function above. First we have to learn a new instruction to multiply two numbers:

```
mul Rdest, Rsource1, Rsource2
```

Note that multiplying two 32 bit values may require up to 64 bits for the result. This instruction only computes the lower 32 bits. Because we are not going to use 64 bit values in this example, the maximum factorial we will be able to compute is 12 ! (13 ! is bigger than 2^{32}). We will not check that the entered number is lower than 13 to keep the example simple (you are encouraged to add this check to the example, though). [Note: In versions of the ARM architecture prior to ARMv6 this instruction could not have Rdest the same as Rsource1. The GNU assembler may print a warning if you don't use the parameter - march $=$ armv6.]

```
/* -- factorial01.s */
.data
message1: .asciz "Type a number: "
format: .asciz "%d"
message2: .asciz "The factorial of %d is %d\n"
.text
factorial: @ Assume the input n is in r0
    str lr, [sp,#-4]! @ Push lr onto the top of the stack
    str r0, [sp,#-4]! @ Push r0 = n onto the top of the stack
    @ Note that after that, sp is 8 byte aligned
    cmp r0, #0 @ Compare r0 and 0
    bne is_nonzero @ if r0 != 0 then branch
    mov r0, #1 @ r0 <- 1. This returns the base case
    b end
is_nonzero: @ Prepare the call to factorial(n-1)
    sub r0, r0, #1 @ r0 <- r0 - 1
    bl factorial @ After the call r0 contains factorial(n-1)
        /* Load n (that we kept in the stack) into r1 */
    ldr r1, [sp] @ r1 <- *sp
    mul r0, r0, r1 @ r0 <- r0 * r1 [See Project]
```

end:
add $\mathrm{sp}, \mathrm{sp}, \#+4$ @ Discard the r 0 we kept in the stack ldr lr, [sp], \#+4 @ Pop the top of the stack and put it in lr bx lr @ Leave factorial
.globl main
main:

str $\operatorname{lr},[\mathrm{sp}, \#-4]!$	@ Push lr onto the top of the stack
sub sp, sp, \#4	@ Make room for one 4 byte integer on the stack
	@ We will keep the user's number entered there

	@ Note: after that the stack is 8-byte aligned
ldr r0, =message1	@ Set \&message1 as the first parameter of printf
bl printf	@ Call printf

Most of the code is pretty straightforward. In both functions, main and factorial, we allocate 4 extra bytes on the top of the stack. In factorial, to keep the value of r0, because it will be overwritten during the recursive call (twice, as a first parameter and as the result of the recursive function call). In main, to keep the value entered by the user (if you recall Chapter 9 we used a global variable here).

It is important to bear in mind that in a stack, like a real stack, the last element stacked (pushed onto the top) will be the first one to be taken out from the stack (popped from the top). We store lr and make room for a 4 byte integer. Since this is a stack, the opposite order must be used to return the stack to its original state. We first discard the integer and then we restore the $1 r$. Note that this happens as well when we reserve the stack storage for the integer using a sub and then we discard such storage doing the opposite operation add.

Almost every recursive program will start with pushing onto the stack all the registers that must be saved including, in particular, the return address. We must save lr since this function may call on some other (or the same) function and write over that register. Then we check to see if we have reached one of the base cases. If so, we do whatever is necessary to return the base case value. Otherwise we prepare the arguments for the recursive call. Upon return from the recursive call we just assume that the function has performed properly. Of course it is the programmer's duty to ensure that fact. Finally,
we restore all the registers that were stored on the stack and return to the original return address.

11.4 Load and Store Multiple

Note that the number of instructions that we need to push and pop data to and from the stack grows linearly with respect to the number of data items. Since the ARM processor was designed for embedded systems, ARM designers devised a way to reduce the number of instructions we need for the "bookkeeping" of the stack. These instructions are load multiple, 1 dm , and store multiple, stm.

These two instructions are rather powerful and allow a single instruction to perform a lot of things. Their syntax is shown as follows. Elements enclosed in curly braces "\{" and "\}" (that do not appear in the actual code) may be omitted from the syntax (however, the effect of the instruction will change).

```
ldm addressing-mode Rbase{!}, register-set
stm addressing-mode Rbase{!}, register-set
```

We will consider addressing-mode later. Rbase is the base address used to load to or store from the register-set which is a list of registers in curly braces. All 16 ARM registers may be specified in register-set (except pc in stm). A set of addresses is generated when executing these instructions - one address per register in the register-set. Then, each register, in ascending order, is paired with one of these addresses, also in ascending order. This way the lowest-numbered register gets the lowest memory address, and the highest-numbered register gets the highest memory address. Each pair (register and address) is then used to perform the memory operation: load or store. Specifying ! means that Rbase will be updated. The updated value depends on the addressing-mode.

Note that if the registers are paired with addresses depending on their register number, then they will always be loaded and stored in the same way. For instance a registerset containing r 4 , r 5 and r 6 will always store r 4 in the lowest address generated by the instruction and $r 6$ in the highest one. We can, though, specify what is considered the lowest address or the highest address. So, is Rbase actually the highest address or the lowest address of the multiple load/store? This is one of the two aspects that is controlled by addressing-mode. The second aspect relates to when the address of the memory operation changes between each memory operation.

If the value in Rbase is to be considered the highest address it means that it will first decrease Rbase as many bytes as required by the number of registers in the register-set (that is 4 times the number of registers) to form the lowest address. Then it will load or store each register consecutively, starting from that lowest address, always in ascending order of the register number. This addressing mode is called Decreasing and is specified using the letter d . Conversely, if Rbase is to be considered the lowest address, then this is a bit easier as it can use its value as the lowest address already. We proceed as
usual, loading or storing each register in ascending order of their register number. This addressing mode is called Increasing and is specified using the letter i.

At each load or store, the address generated for the memory operation may be updated After or Before the memory operation itself. We can specify this using the letters a or b , respectively.

If we specify !, after the instruction Rbase will have the highest address generated in the increasing mode and the lowest address generated in the decreasing mode. The final value of Rbase will include the final addition or subtraction if we use a mode that updates After (an a mode).

So we have four addressing modes, namely: ia, ib, da and db. These addressing modes are specified as suffixes of the stm and ldm instructions. So the full set of names is stmia, stmib, stmda, stmdb, ldmia, ldmib, ldmda, ldmdb. Now you may think that this is overly complicated, but we need not use all the eight modes. Only two of them are of interest to us now.

When we push something onto the stack we actually decrease the stack pointer (because in Raspian the stack grows downwards). More precisely, we first decrease the stack pointer as many bytes as needed before doing the actual store on that just computed stack pointer. So the appropriate addressing-mode when pushing onto the stack is stmdb. Conversely when popping from the stack we will use ldmia: we increment the stack pointer after we have performed the load.

11.5 Factorial again

Before illustrating these two instructions, we will first slightly rewrite our factorial function.

If you go back to the code of our factorial function, there is a moment, when computing $n *$ factorial $(n-1)$, where the initial value of $r 0$ is required. The value of n was in r0 at the beginning of the function, but r0 can be freely modified by called functions. We chose, in the example above, to keep a copy of r0 in the stack. Later, we loaded it from the stack into r 1 , just before computing the multiplication.

In our second version of factorial, we will keep a copy of the initial value of r0 in r4. But r4 is a register the value of which must be restored upon leaving a function. So we will keep the value of r4 at the entry of the function in the stack. At the end we will restore it back from the stack. That way we can use r 4 without breaking the rules of well-behaved functions.

```
factorial:
    str lr, [sp,#-4]! @ Push lr onto the top of the stack
    str r4, [sp,#-4]! @ Push r4 onto the top of the stack
```

```
    @ The stack is now 8 byte aligned
    mov r4, r0 @ Keep a copy of the initial value of r0 in r4
    cmp r0, #0 @ compare r0 and 0
    bne is_nonzero @ if r0 != 0 then branch
    mov r0, #1 @ r0 <- 1. This is the base case; return
    b end
is_nonzero:
    @ Prepare the call to factorial(n-1)
    sub r0, r0, #1 @ r0 <- r0 - 1
    bl factorial
    @ After the call r0 contains factorial(n-1)
    @ Load initial value of r0 (kept in r4) into r1
    mov r1, r4 @ r1 <- r4
    mul r0, r0, r1 @ r0 <- r0 * r1 [See Project]
end:
    ldr r4, [sp], #+4 @ Pop the top of the stack and put it in r4
    ldr lr, [sp], #+4 @ Pop the top of the stack and put it in lr
    bx lr @ Leave factorial
```

Note that the remainder of the program does not have to change. That is the cool thing about functions.

Now pay attention to these two sequences in our new factorial version above.

```
str lr, [sp,#-4]! /* Push lr onto the top of the stack */
str r4, [sp,#-4]! /* Push r4 onto the top of the stack */
ldr r4, [sp], #+4 /* Pop the top of the stack and put it in r4 */
ldr lr, [sp], #+4 /* Pop the top of the stack and put it in lr */
```

Now, let's replace them with stmdb and ldmia as explained in the previous section.

```
stmdb sp!, {r4, lr} /* Push r4 and lr onto the stack */
ldmia sp!, {r4, lr} /* Pop lr and r4 from the stack */
```

Note that the order of the registers in the set of registers is not relevant, but the processor will handle them in ascending order, so we should write them in ascending order. The GNU assembler will emit a warning otherwise. In addition, it is good programming practice to have them look exactly alike. Since $1 r$ is actually $r 14$ it must go after $r 4$. This means that our code is 100% equivalent to the previous one since $r 4$ will end in a lower address than $1 r$: remember our stack grows toward lower addresses, thus r4 which is in the top of the stack in factorial has the lowest address.

Remembering stmdb sp! and ldmia sp! may be a bit difficult. Also, given that these two instructions will be relatively common when entering and leaving functions, the GNU assembler provides two mnemonics: push and pop for stmdb sp! and ldmia sp!, respectively. Note that these are not ARM instructions actually, just convenient names that are easier to remember (actually "macros" in the terminology of other languages).

```
push {r4, lr}
pop {r4, lr}
```


11.6 Tail-recursion

Once we have written, tested, and demonstrated some quick prototype code using recursion, we must turn to optimizing the code that we will actually deliver for production. The example above for calculating factorials will show us one type of optimization that is possible.

Let us consider what return addresses are pushed onto the stack as we run a test program using our code. The test program will call on factorial once passing n as its argument and we store the address of the next instruction of the test program away on the stack. After that there will be many recursive calls on factorial with decreasing arguments from $n-1$ down to 0 but in every case the return address will be the same: the instruction mov r1, r4 which follows the bl factorial within factorial. In a way the repeated return addresses on the stack are little more than counters telling us how many times the function has been called.

Each time we return from the factorial function we must then multiply the result by the corresponding argument n. In particular, we have something else to do.

If the recursive call is the very last thing we need to do, we call the function tailrecursive. In such a case we can directly turn our recursive calls into simple jumps and so have a loop (which is faster since we would not be using the stack at all). Even when a function is not itself tail-recursive, with the aid of an auxiliary function we can often obtain the same benefit. Again, this technique may be used with high-level languages just as well. Here is our improved factorial function in $\mathrm{C} / \mathrm{C}++/$ Java.

```
public int factorial(int n)
{
    return facAux(n,1);
}
int facAux(int n, int ans)
{
    if (n == 0) return ans;
    facAux(n-1, n*ans);
}
```

If we follow the behavior of this code when we test our program with a small number like 5 as input, we see that there would be one call on facAux $(5,1)$ by the main factorial function. Then there would be the succession of recursive calls facAux $(4,5)$, facAux $(3,20)$, facAux $(2,60)$, facAux $(1,120)$, facAux $(0,120)$. Finally, the base case test of $n==$ 0 would return true and we would immediately return the answer of 120 to factorial.

A smart compiler (and we) may realize that we do not need to keep all the return information since each call on the auxiliary function need not do any additional work or return its value to the preceding caller. When we reach the base case, we may return the value directly to the actual function. We may code this so that it is a loop rather than a function call!

```
@ factorial.s
@ tail-recursive loop implementation
@@@@@@ INPUT: @@@@@@@@@@
@
@@ non-negative integer n in r0
@@ (no check - infinite loop if negative)
@
@@@@@@ OUTPUT: @@@@@@@@@@
@
@@ value of n! in r0
@@ (changes r0 and r1)
@
@@@@@@@@@@@@@@@@Q@@@@@@@@@
factorial: @ <= entry point
    mov r1, #1 @ start with ans = 1
Aux: @ r0 = n, r1 = ans
    cmp r0, #0 @ n == 0 ?
    beq return @ if base case, return
    mul r1, r0, r1 @ n*ans
    sub r0, r0, #1 @ new n value
    b Aux @ just a loop! Don't change lr!!
return:
    mov r0, r1 @ put final answer in r0
    blr @ return to original caller
```

The important thing about this example is not that we can program factorial as a loop; we would probably have done that anyway. The point is that we can see how a tailrecursive program can so easily be changed to a loop program. For this reason it is even more likely that originally using recursion would not be a waste of effort. It is an easy exercise to change this code so that r0 and r1 are restored to their original values without losing the speed of a loop.

11.7 Dynamic Programming

Another form of optimization is possible in the cases above where we used double recursion. For example, let us analyze the work done in calculating a Fiboncci number using the straightforward recursive code asked for in Project 7. Unlike the factorial example which is somewhat unnatural because a simple loop program is faster and easier, we will consider one of the most famous naturally recursive functions. Introduced around 1202 by Fibonacci, they arose first in calculating how many rabbits there would be in succeeding generations under a simple rule of birth. These same numbers appear in many applications. Their mathematical definition (in one simple form) is:

```
Fib(0) = 0
Fib(1) = 1
Fib(n) = Fib(n-1) + Fib(n-2) for n >=2
```

In C this is immediately:

```
int Fib(int n)
{
    if (n == 0 || n == 1) return n;
    return Fib(n-1) + Fib(n-2);
}
```

Following the mathematical description, $F i b(10)=F i b(9)+F i b(8)=(F i b(8)+F i b(7))+$ $(F i b(7)+F i b(6))=\ldots$ for $n=10$. We see that some values will be calculated repeatedly. In fact, the Fibonacci numbers grow in size exponentially with n and so does the number of recursive calls.

A very simple solution to this problem is to keep a table of those values that have already been calculated and so evaluate each Fibonacci number only once. The table lookup method is called Dynamic Programming and proceeds from small cases to larger.

Let us apply this technique to the Fibonacci numbers. We will use an array that can hold 50 integers since for larger n the corresponding number will overflow anyhow. Since the ARM initializes space to the value zero, we will not put in any code to do that initialization but it might be necessary in other systems or languages. Another concession will be to use zero as an indication that the value has not been calculated yet. That forces us to note that $F i b(2)=1$ and use that in addition to the usual base cases since $F i b(0)=0$ would not look like a previously calculated value.

```
@ Fib.s
@
@ Dynamic Programming implementation
@@@@@@@ INPUT: @@@@@@@@
@
```

```
@@ non-negative integer n in r0
@@ (no test: negative values address locations outside array)
@
@@@@@@@ OUTPUT: @@@@@@@@@@@
@
@@ nth Fibonacci number in r0
@
@@@@@@@ TO USE: @@@@@@@@@@@
@
@@ mov r0, n @ Put the n in r0
@@ bl Fib @ Returns with answer in r0
@
Fib: @ <= entry point
@ save registers
    push {r4, r5, r6, lr} @ 8 byte aligned
@ check for zero
    cmp r0, #0
    beq return @ Fib(0) = 0
@ check FibArray for answer
    mov r4, r0 @ save n in r4
    mov r1, r0, LSL #2 @ take r0 = n and get r1 = 4*n
    ldr r0, =FibArray @ get array address
    add r0, r1, r0 @ actual location address
    mov r6, r0 @ save that location address in r6
    ldr r0, [r0] @ what's there
    cmp r0, #0 @ has it been calculated yet?
    bne return @ if not zero, found it already
@ otherwise we have to actually do the calculation
@ adjust input parameter
    sub r0, r4, #1 @ n-1 new argument
    bl Fib @ first recursive call
    mov r5, r0 @ save result in r5
    sub r0, r4, #2 @ now use n-2 as argument
    bl Fib @ second recursive call
    add r0, r5, r0 @ new result
    str r0, [r6] @ save it in FibArray at correct location
@ restore registers
return:
    pop {r4, r5, r6, lr}
    bx lr
.data
FibArray:
.word 0 @ Fib(0) = 0
.word 1 @ Fib(1) = 1
```

```
.word 1@ Fib(2) = 1
.space 188 @ room for 47 more
```

Even on a fairly fast processor we can finally do so large a calculation that the time lag will be quite noticeable. The straight recursive Fib function will take a significant amount of time to run when given, for example, an n value of 40 . With most of the recursive calls removed by Dynamic Programming, it should be instantaneous.

Projects

1. When using the mul instruction, we wrote mul r0, r0, r1. Compare that to mul r0, r1, r0.
2. It is frequently needed to find out what is the information at the top of the stack. Write a simple function top that returns that value but does not (permanently) change the stack, using only push and pop. This shows that a built-in function top is not necessary but it might be available.
3. Modify the factorial function code to check for input greater than 12 . What happens with larger values? Why?
4. Write and test a program to reverse an input list of numbers using recursion.
5. Write and test a tail-recursive function to calculate the product of two integers $\operatorname{product}(n, m)=n * m$ using only addition and subtraction as if there were no multiply hardware and it must be done in software.
6. Write and test a tail-recursive function to calculate the sum of two integers $\operatorname{sum}(n, m)=n+m$ using only increment (adding 1) and decrement (subtracting 1) as if there were no adding hardware and it must be done in software using only increment and decrement hardware.
7. (Fibonacci Numbers) Write a recursive (but not tail-recursive) assembler language program to calculate the Fibonacci number of a non-negative input integer by direct translation of the C code. How large an integer can your program handle? How slow is it?
8. (Binomial Coefficients) The number of combinations of n identical objects taken k at a time, denoted by $C(n, k)$, can be calculated using the recursive formula given in C/C++/Java code by
```
public int C(int n, int k)
{
if (n == 0 || k == 0 || k == n) return 1;
return C(n-1,k) + C(n-1,k-1); // 0<k<n
}
```

In our study of Discrete Mathematics we will see that $C(n, k)$ is the $k^{\text {th }}$ coefficient in the expansion of the expression $(x+y)^{n}$. These numbers are called the binomial coefficients. Again it is easy to translate this directly into ARM assembly code. Write a program that prompts for n and k and returns $C(n, k)$. Add checks for incorrect input in your code for $C(n, k)$; return -1 if $0 \leq k \leq n$ fails in any way.
9. Using the function $C(n, k)$ as a model, write assembler code to calculate the recursive function J defined by $J(0)=0, J(1)=1$, and

$$
J(n)=2 n J(n-1)-J(n-2)
$$

for $n \geq 2$. Assume, as usual, that r 0 contains n and the answer is returned in r 0 . Write a driver program to print out the values of $J(n)$ for $n=0$ to $n=25$. (Also, assume the values are small integers.)
10. Fix the tail-recursive version of factorial so that registers r0 and r1 are not changed.
11. Write a "driver" program to call on our tail-recursive Fib.s program and print out values.
12. Look up the simple closed-form equation for the $n^{\text {th }}$ Fibonacci number.

12 Conditional Execution

Several times, in earlier chapters, we stated that the ARM architecture was designed with the embedded world in mind. Although the cost of the memory becomes lower everyday, it still may account for an important part of the budget of an embedded system. The ARM instruction set has several features meant to reduce the impact of code size and, as we shall see, branching. One of those features is predication.

12.1 Predication

We saw in earlier chapters how to use branches in our program in order to modify the execution flow of instructions and implement useful control structures. Branches can be unconditional, for instance when calling a function, or conditional when we want to jump to some part of the code only when a previously tested condition is met.

Predication is related to conditional branches. What if, instead of branching to some part of our code meant to be executed only when a condition C holds, we were able to turn off some instructions when the C condition does not hold? Consider some case like this:
if (C)
T();
else
F();
Using predication (and with some invented syntax to express it) we could write the above if-else statement as follows:

```
P = C; @ get the predicate
[P] T(); @ if P is true, do T(), otherwise, do nothing
[!P] F(); @ if P is false, do F(), otherwise, do nothing
```

This way we avoid branches. But, why would be want to avoid branches? Well, executing a conditional branch involves a bit of uncertainty as to what will happen in the future. This deserves a bit of explanation.

12.2 The pipe line of instructions

Imagine an assembly line. In that assembly line there are 5 workers, each one fully specialized to a single task. That assembly line executes instructions. Every instruction enters the assembly line from the left and leaves it at the right. Each worker does some task on the instruction and passes it to the next worker to the right. Also, imagine all workers are more or less synchronized, each one ends its task in exactly 6 seconds. This means that at every 6 seconds there is an instruction leaving the assembly line, an instruction being fully executed. It also means that at any given time there may be up to 5 instructions being processed (although not fully executed, we only have one fully executed instruction at every 6 seconds).

The assembly line of instructions

Figure 12.1

The first worker fetches instructions and puts them in the assembly line. It fetches the instruction at the address specified by the register pc. By default, unless told, this worker next fetches the instruction physically following the one previously fetched (this is implicit sequencing again).

In this assembly line, suppose the worker that checks the condition of a conditional branch is not the first one but the third one. Now consider what happens when the first worker fetches a conditional branch and puts it in the assembly line. The second worker will process it and pass it to the third one. The third one will process it by checking the condition of the conditional branch. If it does not hold, nothing happens, the branch has no effect. But if the condition holds, the third worker must notify the first one that the next instruction fetched should have been the instruction at the address of the branch.

But now there are two instructions in the assembly line that should not be fully executed (the ones that were physically after the conditional branch). There are several options here. The third worker may pick up two stickers labeled as DO NOTHING, and stick them on the two next instructions. Another approach would be for the third worker to tell the first and second workers: "Hey guys, stick a DO NOTHING on your current instruction". Later workers, when they see these Do nothing stickers will do, naturally, nothing. This way each Do NOTHING instruction will never be fully executed.

But by doing this, that nice property of our assembly line is gone: now we do not have a fully executed instruction every 6 seconds. In fact, after the conditional branch there
are two Do nothing instructions. A program that is constantly doing branches may well reduce the performance of our assembly line from one (useful) instruction each 6 seconds to one instruction each 18 seconds. This is three times slower!

The third worker realizes that a branch is taken. Next two instructions will get a DO NOTHING sticker

Figure 12.2

The truth is that modern processors, including the one in the Raspberry Pi, have branch predictors which are able to mitigate these problems: they try to predict whether the condition will hold, so the branch is to be taken or not. Branch predictors, though, predict the future like stock brokers and weather forecasters, using the past and, when there is no past information, using some sensible assumptions. So branch predictors may work very well with relatively predictable codes but may work not so well if the code has unpredictable behavior.

Back to the assembly line example, it would be the first worker who attempts to predict whether the branch will be taken or not. It is the third worker who verifies if the first worker did the right prediction. If the first worker mispredicted the branch, then we have to apply two stickers again and notify the first worker what is the right address of the next instruction. If the first worker predicted the branch right, nothing special has to be done, which is great.

If we avoid branches, we avoid the uncertainty of whether the branch is taken or not. So it looks like that predication is the way to go. It is not a perfect answer, however. Processing a bunch of instructions that are actually turned off is not an efficient usage of a processor.

Back to our assembly line, the third worker will check the predicate. If it does not hold, the current instruction will get a DO NOTHING sticker but in contrast to a branch, it does not have to notify the first worker.

So it ends, as usual, that no approach is perfect on its own. Of course we use the assembly line analogy because that is what actually happens in computer processors. Different processors have different numbers of stages in their "pipelines", but all do divide up the work that appears as a single instruction into stages in order to increase performance.

12.3 Predication in ARM

In ARM, predication is very simple to use: almost all instructions can be predicated. The predicate is specified as a suffix to the instruction name. The suffix is exactly the same as those used in branches in Chapter 6: eq, ne, le, lt, ge and gt. Instructions that are not predicated are assumed to have a suffix al standing for ALways. That predicate always holds and we do not write it for the sake of economy (it is valid though). You can understand conditional branches as predicated branches if you feel like it.

12.4 Collatz conjecture revisited

In Section 7.4 we implemented an algorithm that computed the length of the Collatz (or Hailstone) sequence of a given number. Though not proved yet, no number has been found that has an infinite Collatz sequence. Given our knowledge of functions from Chapter 10, we have encapsulated the code that computes the length of the Collatz sequence in a function.

```
/* -- collatz02.s */
.data
4 message: .asciz "Type a number: "
scan_format: .asciz "%d"
message2: .asciz "Length of the Collatz sequence for %d is %d\n"
8 .text
10 collatz:
11 @ r0 contains the first argument
12 @ Only r0, r1 and r2 are modified, so
12 @ we do not need to keep anything in the stack
13 @ Since we do not do any calls, we do not have to keep lr either
14 mov r1, r0 @ r1 <- r0
```

3
7
9

```
    mov r0, #0
        @ r0 <- 0
collatz_loop:
    cmp r1, #1 @ compare r1 and 1
    beq collatz_end @ if r1 == 1 branch to collatz_end
    and r2, r1, #1 @ r2 <- r1 & 1 (even or odd)
    cmp r2, #0 @ compare r2 and 0
    bne collatz_odd @ if r2 != 0 (odd) branch to collatz_odd
collatz_even:
    mov r1, r1, ASR #1 @ r1 <- r1 >> 1. [r1 <- r1/2]
    b collatz_end_loop @ branch to collatz_end_loop
collatz_odd:
    add r1, r1, r1, LSL #1 @ r1 <- r1 + (r1 << 1). [r1 <- 3*r1]
    add r1, r1, #1 @ r1 <- r1 + 1.
collatz_end_loop:
    add r0, r0, #1 @ r0 <- r0 + 1
    b collatz_loop @ branch back to collatz_loop
collatz_end:
    bx lr
.global main
    main:
    push {lr} @ keep lr
    sub sp, sp, #4 @ make room for 4 bytes in the stack
        @ The stack is now 8 byte aligned
    ldr r0, =message @ 1st parameter of printf: &message
    bl printf @ call printf
    ldr r0, =scan_format @ 1st parameter of scanf: &scan_format
    mov r1, sp @ 2nd parameter of scanf:
        address of the top of the stack
    bl scanf @ call scanf
    ldr r0, [sp] @ 1st parameter of collatz:
        @ the value stored (by scanf) in
        @ the top of the stack
    bl collatz @ call collatz
    mov r2, r0 @ 3rd parameter of printf:
        @ the result of collatz
        @ 2nd parameter of printf:
        @ the value stored (by scanf) in
        @ the top of the stack
    ldr r0, =message2 @ 1st parameter of printf: &message2
```

```
59 bl printf
6 0
61 add sp, sp, #4 @ return space from stack
62 pop {lr}
bx lr
```


12.5 Adding predication

Now, let's add some predication. There is an if-then-else construct in lines 22 to 31 . There we check if the number is even or odd. If even we divide it by 2 , if odd we multiply it by 3 and add 1 .

```
    and r2, r1, #1 @ r2 <- r1 & 1 (even or odd)
    cmp r2, #0 @ compare r2 and 0
    bne collatz_odd @ if r2 != 0 (odd) branch to collatz_odd
collatz_even:
    mov r1, r1, ASR #1 @ r1 <- r1 >> 1. [r1 <- r1/2]
    b collatz_end_loop @ branch to collatz_end_loop
collatz_odd:
    add r1, r1, r1, LSL #1 @ r1 <- r1 + (r1 << 1). [r1 <- 3*r1]
    add r1, r1, #1 @ r1 <- r1 + 1
collatz_end_loop:
```

Note in line 21 that there is a bne (Branch if Not Equal) instruction. We can use this condition (and its opposite beq) to predicate this if-then-else construct. Instructions in the then part will be predicated using eq, instructions in the else part will be predicated using ne. The resulting code is shown below.

```
cmp r2, #0 @ Compare r2 and 0
moveq r1, r1, ASR #1 @ if r2 == 0, r1 <- r1 >> 1. [r1 <- r1/2]
addne r1, r1, r1, LSL #1 @ if r2 != 0, r1<-r1+(r1<<1). [r1 <- 3*r1]
addne r1, r1, #1 @ if r2 != 0, r1 <- r1 + 1
```

As you can see, there are no labels in the predicated version. We do not branch now so they are not needed anymore. Note also that we actually removed two branches: the one that branches from the condition test code to the else part and the one that branches from the end of the then part to the instruction after the whole $i f$-then-else. This leads to a more compact code and the "pipeline" will not be stalled by possible branches.

12.6 Does it make any difference in performance?

Taken as it is, this program is too small to be able to accurately consider the time it takes to run, so we modified it to run the same calculation inside the Collatz function

4,194,304 (that is 2^{22}) times. That number was chosen after some tests, so the execution did not take so much time as to be tedious. We used the number 123 as n expecting 46 steps as the answer.

It is very difficult to actually time the execution, even trying to use tools that are available. However, after much tribulation we obtained:

The version with branches gives the following results:

$$
3359.953200 \text { cpu-clock }(+-0.01
$$

3.365263737 seconds time elapsed (+-0.01

The version with predication gives the following results:

$$
2318.217200 \text { cpu-clock }(+-0.01
$$

2.322732232 seconds time elapsed (+ - 0.01

So the answer is, "yes". In this case it does make a difference. The predicated version runs 1.44 times faster than the version using branches. It would be bold, though, to assume that in general predication outperforms branches. Always measure your time.

12.7 The s suffix

So far, when checking the condition of an if or while, we have evaluated the condition and then used the cmp intruction to update the cpsr. The update of the cpsr is mandatory for our conditional codes, no matter if we use branching or predication. But cmp (and other such instructions) is not the only way to update the cpsr. In fact many instructions can update it.

By default an instruction does not update the cpsr unless we append the suffix \mathbf{s}. So instead of the instruction add or sub we write adds or subs. The result of the instruction (what is being stored in the destination register) is used to update the cpsr. Note that if we also use predication, the \mathbf{s} follows it.

How can we use this? Well, consider this simple loop counting backwards.

```
/* for (int i = 100 ; i >= 0; i--) */
mov r1, #100
loop:
    /* do something */
    sub r1, r1, #1 @ r1 <- r1 - 1
    cmp r1, #0 @ update cpsr with r1 - 0
    bge loop @ branch if r1 >= 0
```

If we replace sub by subs then the cpsr will be updated with the result of the subtrac-
tion. That means that the flags $\mathrm{N}, \mathrm{Z}, \mathrm{C}$ and V will be updated, so we can use a branch right after the subs. In our case we want to jump back to loop only if $i \geq 0$, that is, when the result is non-negative. We can use bpl to achieve this.

```
/* for (int i = 100 ; i >= 0; i--) */
mov r1, #100
loop:
    /* do something */
    subs r1, r1, #1 @ r1 <- r1 - 1, update cpsr with the final r1
    bpl loop @ branch if the previous sub computed a positive
    @ number (N flag in cpsr is 0)
```

It is a bit tricky to get these things right (this is why we use compilers). For instance this similar, but not identical, loop would use bne instead of bpl . Here the condition is ne (not equal). It would be nice to have an alias like nz (not zero) but, unfortunately, that does not exist in ARM.

```
/* for (int i = 100 ; i > 0; i--)
    Note here i > 0, not i >= 0 as in the example above
*/
mov r1, #100
loop:
    /* do something */
    subs r1, r1, #1 @ r1 <- r1 - 1, update cpsr with the final r1
    bne loop @ branch if the previous sub computed a number
    @ that is not zero (Z flag in cpsr is 0)
```

A rule of thumb as to where we may want to apply the use of the s suffix is in codes of the following form.

```
s = ...
if (s ?? 0)
```

where ?? means any comparison with respect to 0 (equals, different, lower, etc.).

Projects

1. Consider modifying lines 54-61 in the BinarySearch.s code in Section 10.1.
2. Consider modifying factorial.s from Section 11.3 where the instruction cmp r0, \#0 occurs followed by three instructions.
3. Look up the behavior of the other comparison operators cmn, tst and teq. Just as cmp is basically subs but does not store the result, what are the equivalent operations for these other test-type operators?
4. Check whether the s suffix works on your system.
5. In addition to the operations add, sub, rsb, adc, sbc, rsc (what are they all?), note that the mov instruction also can take an s suffix. Test out all these ARM operators. Try ldrs and see if it works.

13 Floating-point Numbers

So far we have only treated numbers that are integers. As we saw, their size (assuming a 32 -bit 2 's-complement representation) is limited to the range of $-2,147,483,648$ to $+2,147,483,647$. For scientific purposes, even larger numbers are necessary. At the other end of the scale, very small numbers (anything less than one in absolute value!) play an equally important role. While there are many possible ways to obtain a wider range and finer accuracy than considering only the nearest integer, we will concentrate on the representation standardized by the IEEE in 1985 and rather universally used.

13.1 IEEE-754 Standard

We should be used to what is called "scientific notation" from courses in chemistry and physics. For example, Avogadro's number is about 6.023×10^{23} atoms $/ \mathrm{mole}$ and Planck's constant is near 6.62×10^{-27} erg-seconds. The general rule in decimal notation is to pick a power of 10 for which there is exactly one non-zero digit to the left of the decimal point. Such numbers are called normalized. Thus, from the choice of
$\cdots, 6023 \times 10^{20}, 602.3 \times 10^{21}, 60.23 \times 10^{22}, 6.023 \times 10^{23}, 0.6023 \times 10^{24}, 0.06023 \times 10^{25}, \cdots$
we will pick the representation used above.
The same rule will be applied to binary numbers. Each non-zero number will be written as a 1 to the left of the binary point, a binary fraction to its right, all multiplied by a power of two. For example, $25.75_{\text {DEC }}$ would be $11001.11_{\text {BIN }}$ or $1.100111_{\text {BIN }} \times 2^{4}$ in normalized form. Conversions between base 10 and base 2 are quite straightforward.

The next question is how to represent these numbers in a computer. Much careful analysis was made about that problem and in 1985 a standard was agreed to under the direction of the IEEE. Assuming a 32 -bit word, the decision must be made as to what the various bits stand for. As with integers, one bit must be used to indicate the sign of the number and, again, bit 31 will be used for that purpose. Now the other 31 bits must be assigned.

Clearly, the choice must be how many are to be assigned to the exponent of 2 and how many (the remainder) to the binary fraction part of the number, often called the mantissa. The more we allow in the exponent, the larger and smaller the numbers can
be. The more we allow in the mantissa, the more accurate our approximations will be. Obviously, we must trade off between range and accuracy.

The choice made by the numerical analysts was to use 8 bits for the exponent part and the remaining 23 bits for the fractional part. Just to show how important each bit is, it was noted that every non-zero number had a single 1 to the left of the binary point. Since it must be there, it need not actually appear in the word. Thus, bits 22 down to 0 are the binary fractional part of the number with " 1 ." understood before it. Thus there is the equivalent of 24 bits of accuracy rather than just 23 bits!

The choice just made affects the other 8 exponent bits from 30 down to 23 , however. There are just 256 different bit patterns for those bits and again we must decide on their meanings. Both positive and negative exponents are needed and two's complement representation would have worked, but that wasn't the decision for various reasons. As unsigned integers, those 8 bits would be representations of numbers from 0 to 255 . In order to allow negative exponents, a bias of -127 is applied to these numbers. That is, 127 is subtracted from the unsigned value giving a range of exponents of the base 2 from -127 to +128 .

In summary, the form of a non-zero floating-point number will be

$$
(-1) S \times 2^{E-127} \times(1 . M)
$$

where S is the sign bit (31), E is the exponent field (30-23) as an unsigned integer, and M is the mantissa (22-0).

The number zero does not have a 1 before the binary bit and so could not be expressed in this way. Another detail was added to the rules. The unbiased exponents of 0 and 255 were reserved for special cases. For example, a zero exponent is associated with the floating-point number 0.0 and some "unnormalized" numbers smaller than those that can be expressed in normalized form. They have the general form

$$
(-1) S \times 2^{0-127} \times(0 . M)
$$

The exponent $11111111_{\text {BIN }}$ is associated with such special values as "infinity" and "NotANumber" (0/0, for example). We will not go into these special values in any detail since the regular numbers are interesting enough. They are the "floats" of C/C++/Java.

In case the 24-bit accuracy is not sufficient, double precision numbers were also defined. They use two consecutive words (64 bits) in a similar way. The high order bit of the first word is the sign bit as before. The next 11 bits of the first word are the exponent of 2 biased by -1023. Finally, the remaining 52 bits consisting of the last 20 bits of the first word and all the 32 bits of the second word are the fractional part with an understood " 1. ." in front as before. The unbiased exponents of 0 and 2047 are reserved for special cases as with single precision numbers. The general form of these numbers is

$$
(-1) S \times 2^{E-1023} \times\left(1 . M W_{2}\right)
$$

where S is the sign bit (31) from the first word, E is the exponent field (30-20) from the first word as an unsigned integer, M is the mantissa field (19-0) of the first word which is concatenated with W_{2}, the entire second word. These are the "doubles" of C/C++/Java.

13.2 Examples

The number $25.75_{D E C}=1.100111_{B I N} \times 2^{4}$ described above has an exponent of $4=$ $131-127$ and a fractional part of $.100111_{\text {BIN }}$. Since $131_{\text {DEC }}=10000011_{\text {BIN }}$ and the number is positive, the full representation of that floating-point number would be

$$
25.75_{D E C}=01000001110011100000000000000000_{B I N}=0 x 41 C E 0000
$$

Starting with the floating-point representation of a number such as

$$
10111110001011000000000000000000_{B I N}=0 x B E 2 C 0000
$$

we see that the sign bit is on and so the number is negative. The exponent bits form the unsigned integer 124 and so, after subtracting 127, the exponent of 2 is -3 . Putting the understood 1 . in front of the fractional part we get $1.01011_{B I N}$, which means $1+$ $1 / 4+1 / 16+1 / 32=43 / 32$. Multiplying by $2^{-3}=1 / 8$, we get the fraction $43 / 256$ or the decimal number $-0.16796875_{D E C}$ as our final answer. Our assembler can do these calculations for us so we will not practice many of them by hand.

An important example we should consider immediately is the decimal value $1 / 10=$ $0.1_{D E C}$. A simple method for converting base ten fractions to base two is to repeatedly double the fractional part of the value and take the integer part (0 or 1 , obviously) as the next bit. Thus, we obtain (0).2, (0).4, (0).8, (1).6, (1).2, (0).4, (0).8, (1).6, (1).2, (0).4, (0).8, (1).6, etc. The binary fraction, then, is

$$
0.000110011001 \ldots B I N=2^{-4} \times 1.10011001 \ldots B I N
$$

which is obviously a repeating fraction. When we try to represent this number we must truncate it to as many bits as are available. In normalized IEEE-754 form we would have

$$
+2^{123-127}(1+.10011001 \ldots \text { BIN })=0011110111001100110011001100110 ?_{B I N}
$$

where the last place is in question since there must be round-off error when truncating a repeating fraction of this type. The bit in the question mark place is a zero but the next bit would be a one. That means that the remainder would be more than one-half and so we should round the value to a one in the last place. Our final answer would be

$$
0.1_{D E C} \approx 00111101110011001100110011001101_{B I N}=0 x 3 D C C C C C D
$$

This number is slightly more than $1 / 10$ but $0 x 3$ DCCCCCC is slightly less than $1 / 10$. We cannot express the simple fraction $1 / 10$ exactly in our binary system! We have, however, exactly expressed the fraction 13421773/134217728 (check this!).

In many computers there are additional bits carried along with the stated 32 to improve the accuracy of computations. That is a subject of more advanced study. For us the important thing is that no matter how many bits are used, there will be errors in our values since not all numbers can be exactly represented. Indeed, only at most 2^{32} different numbers could possibly be represented with only 32 bits. Doing everything in double precision may be more accurate (and slower), but is not the entire answer since, again, not all values can be represented.

13.3 Extremes

Since one of the reasons for using floating-point numbers rather than just integers was to extend the range of values which could be described, we will now consider exactly what the largest and smallest values available are. Using the 32-bit IEEE-754 standard, we must remember that the unbiased exponents of 0 and 255 are reserved so the smallest we may use is 1 and the largest 254 .

The smallest (positive) number would have an unbiased exponent field of $00000001_{\text {BIN }}$ and a mantissa of all zeros. The true exponent of 2 would be $1-127=-126$ while the fractional part would be just the virtual 1. we assume present. In other words, the decimal value of the smallest positive number would be $2^{-126}(1.0) \approx 1.175494351 \times 10^{-38}$.

It is interesting to also consider what would be the very next larger positive number that can be represented. The unbiased exponent would still be 1 but the fraction would have a 1 in the last place, corresponding to a term of 2^{-23}. The result, then, is

$$
2^{-126}\left(1+2^{-23}\right)=2^{-126}+2^{-149} \approx 1.175494211 \times 10^{-38}
$$

the numbers differing by about $1.401298464 \times 10^{-45}$. Notice that the smallest and the next larger number agree in their first seven digits (1175494). We would say that they are the same to seven "significant figures."

At the other end of the range of values, the largest positive number would have an unbiased exponent of 254 so the true exponent would be $254-127=127$. The fractional part would have all ones and the number would look like

$$
011111110111111111111111111111111_{B I N}=0 x 7 F 7 F F F F F
$$

Recognizing the positions in the fraction stand for negative powers of two, we see that if we add one in the last or least significant position $\left(2^{-23}\right)$ to the number, we would get a sum of 2 (since there is already a virtual " 1. " in front of the fraction). Putting these facts together we have the value

$$
2^{127} \times\left(2-2^{-23}\right)=2^{128}-2^{104} \approx 3.402823669 \times 10^{38}-2.028240960 \times 10^{31}
$$

and that is approximately $3.402823466 \times 10^{38}$. Now let us find the very next (smaller) number in this representation. It would look like 0x7F7FFFFE, differing by having a
zero in the last place. The calculation we just did tells us that the change will be the value of 2^{104} found above or about 2×10^{31}, which is a very large number. The fact that any number in the entire range of over 10^{31} reals from one number to the next must be rounded-off to one of these numbers differing by so much is surprising. On the other hand, we note that we still have the same seven significant figures as we had before!

While there can be no exact representation of all the integers between the largest and the next largest number, it is interesting to note that every integer less than 16,777,216 has an exact IEEE-754 representation. It is an exercise to show why that is true.

13.4 Exceptions

Although we now can express numbers over a very large range, it is still possible to have the same overflow problem we had with integers. If the result of a calculation (or any of its intermediate steps) is larger in size than the $3.402823466 \times 10^{38}$ we found above, the system must take some special action. As with integers, the behavior of a system depends on the hardware and software involved. In some cases an exception is raised (as in Java's try-catch statements) and can be handled by special code written by the programmer. In other cases the hardware may automatically transfer control to code in the operating system that may or may not allow the program to continue.

With floating-point numbers there is another problem that can arise. The result of a calculation (or, again, any of its intermediate steps) may be smaller in size than the $1.175494351 \times 10^{-38}$ we calculated above. If that happens, we say that underflow has occurred. Again the behavior of the system depends on both the hardware and the software involved.

A very frustrating situation can occur when one's program contains a loop in which better and better approximations to the correct answer are being calculated. The error term is getting smaller and smaller. On some systems the language/compiler/OS/hardware combination is such that if the approximation gets too good, the error term causes underflow and the program is aborted without any way for the user to retrieve that excellent approximation. (See Chapter 16 for more on exceptions.)

13.5 Accuracy

Unlike integers in which their arithmetic is exact, the operations of addition, subtraction, multiplication, and division will usually yield only approximations to the correct answer. As we saw above, we cannot represent $0.1_{D E C}$ exactly and so adding it to itself 10 times will probably not yield $1.0_{\text {DEC }}$ exactly. Consider the simple for-loops in $\mathrm{C} / \mathrm{C}++/ \mathrm{Java}$ pseudo-code:

```
for (float x = 0.0; x < 1.0; x += 0.1) {do something involving x}
```

versus
for (int $i=0 ; i<10 ; i++$) \{do something involving $x=i / 10.0\}$
While the second will definitely loop ten times, the first might not! In fact, an even more dangerous idea is to test two float numbers for equality. While we could replace $i<10$ by $i!=10$, the expression $x!=1.0$ would probably always be true and give us an infinite loop! As a general rule in C/C++/Java, never test floats for equality!

As mentioned before, we will not spend time now on hand calculations that involve floating-point numbers since the GNU assembler actually supports them and allows us to use them quite easily. However, even before writing programs which use floatingpoint numbers in the next chapter, we can consider another major problem that can occur with them.

Suppose we are doing decimal calculations involving $\pi=3.141592654 \ldots$ and also a very accurate fractional approximation $355 / 113=3.14159292 \ldots$. [Note: That's a lot better than $22 / 7$.] If we actually have, as calculated above, just 7 significant digits, these two values would be stored as 3.141593 and 3.141593 - exactly the same! Indeed, if we were able to store them to 8 significant figures, they would be 3.1415927 and 3.1415929 . Their difference would be 0.0000002 a figure with just 1 significant digit in it!

This behavior is called catastrophic cancellation. When we take the difference between two numbers of approximately the same size, we lose significant digits in the answer. The ill-conditioned Hilbert matrices are an excellent example of this problem. The $n^{t h}$ Hilbert matrix is defined to be

$$
\left[\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & \cdots & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & \cdots & 1 /(n+1) \\
1 / 3 & 1 / 4 & 1 / 5 & \cdots & 1 /(n+2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 / n & 1 /(n+1) & 1 /(n+2) & \cdots & 1 /(2 n-1)
\end{array}\right]
$$

Expanding the determinant of such a matrix we find it has n ! terms, half positive and half negative, and all about the same size. Trying to calculate the determinant of even small cases of the Hilbert matrix is difficult.

A common behavior is using $22 / 7=3.142857143 \ldots$ and keeping all those figures past the third when approximating π. The problem is that a computer will print out the same large number of digits, even if most of them are meaningless. That leads people to believe in their accuracy quite unjustifiably.

Let us look at the simple act of adding two floating-point numbers together. If their sizes are nearly the same, we saw above that subtracting can cause loss of precision. Now suppose that the two numbers are quite different in size and we wish to add them. Since they are assumed to be different in size, their exponents will be very different. In order to add them we must first shift the smaller one (with the smaller exponent) to
the right, thus "un-normalizing" it, until it has the same exponent as the larger. Only then can we add the fractional parts. That result may need renormalization but that is easy to do. The problem is that when we shifted the smaller number right we may have lost some of the important information those lower bits contained. Obviously, if the numbers differ by more than the seven significant decimal digits we have, the smaller will look just like zero!

13.6 *Fixed-point Numbers

While the floating-point numbers have the advantage in range, the integers we considered earlier had the advantage of allowing for exact calculations. Our integers in two's complement form are just one example of another general way in which we may represent numbers in a computer. Fixed-point numbers are used in many Digital Signal Processing (DSP) systems [but NOT the ARM processor we are studying].

Since they are not really part of our use of ARM as an example for the study of assembler and computer architecture, we will introduce them as they would appear on a 16 -bit machine just to emphasize this point. A general notation for a fixed-point format is m.n (mQ.n and Qn are also used in the literature) where m is the number of bits (including a sign bit) assumed to the left of the binary point and n is the number of bits to the right. Thus, $\mathrm{m}+\mathrm{n}$ always equals the total number of bits available (we will use 16 here).

For negative numbers we will still use the two's complement method of representation. Thus, the 16 -bit integers may be considered fixed-point numbers with format 16.0; all sixteen bits appear before the virtual binary point. Were we to need to consider exact calculations concerning dollars and cents, we might use the equivalent of a 14.2 format in a decimal computer, carrying two digits after the decimal point.

In many cases, we know that our data is of absolute value less than one (sine or cosine, maybe). An interesting format for such numbers would be 1.15 (also called Q15); one sign bit and 15 fractional bits. Let us consider the details of such numbers.

The largest 16-bit positive fixed-point number expressible in 1.15 format would be $0111111111111111_{B I N}$. That is, the sign bit of zero followed by a binary point and the fractional part consisting of all ones. The value of this number would be $1-2^{-15} \approx$ $.9999694824_{D E C}$, very close to 1 . On the other hand, the smallest positive number would be $0000000000000001_{\text {BIN }}$ whose value is $2^{-15} \approx .00003051757812_{\text {DEC }}$.

These numbers act like integers in that each successive number differs by exactly that 2^{-15} we found above and their arithmetic is exact. For many purposes, particularly in DSP calculations, fixed-point numbers fit the problem very well and the hardware should be made available to support such numbers and their calculations. All that we have discussed concerning 16 -bit numbers applies to our usual 32 -bit numbers. A point to notice is that there are just 65536 different 16 -bit patterns and it is up to us to decide how to interpret them.

Projects

1. Justify the doubling method described for converting decimal fractions to binary.
2. Express $1.0_{D E C}$ in IEEE-754 form. What is the next larger number expressible in that representation?
3. What integers can be exactly expressed in IEEE-754 form?
4. What is the decimal value of the floating-point number $0 x \mathrm{D} 52 \mathrm{C} 0000$?
5. What are the values of the two approximations to $0.1_{D E C}$ found above?
6. What are the largest and smallest positive numbers in double precision?
7. In C/C++/Java, add up the terms of the infinite series $1+1 / 2+1 / 3+1 / 4+\ldots$ until the partial sums no longer change. At what point did that happen? What value for the partial sum did you get? What is the correct sum of this infinite series? Try starting at the place you found above and adding them together in reverse order. Is the answer the same?
8. What are the largest and smallest 32-bit fixed-point numbers in 1.31(or Q31) format?
9. Calculate the determinant of some of the small cases of the Hilbert matrices.
10. Look up the new enhancements to the IEEE754-2008 requirements as used by the ARM 3.

14 Real Computations

In the early days of computers, there was no hardware support for floating-point computations. If they were needed, software routines had to be written to perform any operations desired. The 8087 chip which was added later and served as a coprocessor to the 8088 processor in the original PC was extremely powerful and demonstrated the advantages of having floating-point numbers fully supported in hardware. Nevertheless, many DSP chips today, although fantastically powerful, only support fixed-point numbers.

The ARM processor has a floating-point coprocessor with it and so does an excellent job of supporting such computations. As we stated several times in earlier chapters, the ARM was designed to be very flexible. We can see this in the fact that the ARM architecture provides a generic coprocessor interface. Manufacturers of a "system-on-achip" may bundle additional coprocessors. Each coprocessor is identified by a number and provides specific instructions. For instance the Raspberry Pi SoC is a BCM2835 which provides a multimedia coprocessor (which we will not discuss here).

That said, there are two standard coprocessors in the ARMv6 architecture: 10 and 11. These two coprocessors provide floating point support for single and double precision, respectively. Although the floating point instructions have their own specific names, they are actually mapped to generic coprocessor instructions targeting coprocessors 10 and 11.

The ARMv6 defines a floating point subarchitecture called the Vector Floating-Point v2 (VFPv2). Version 2 because earlier ARM architectures supported a simpler form called now v1. As stated above, the VFP is implemented on top of two standardized coprocessors 10 and 11. The ARMv6 does not require VFPv2 be implemented in hardware (one can always resort to a slower software implementation). Fortunately, the Raspberry Pi 2 does provide a hardware implementation of VFPv2.

14.1 VFPv2 Registers

We already know that the ARM architecture provides 16 general purpose registers r 0 to r 15 , where some of them play special roles: $\mathrm{r} 13, \mathrm{r} 14$ and r 15 . Despite their name, these general purpose registers do not allow operating on floating point numbers in them,
so VFPv2 provides us with some specific registers for that purpose. These registers are named s0 to s31, for single-precision, and d0 to d15 for double precision. These are not 48 different registers. Instead every double precision register $d(n)$ is mapped to two consecutive single precision registers $\mathrm{s}(2 \mathrm{n})$ and $\mathrm{s}(2 \mathrm{n}+1)$, where n is less than or equal to 15 .

These registers are structured into 4 banks:

$$
\begin{array}{ll}
\mathrm{s} 00-\mathrm{s} 07 & (\mathrm{~d} 00-\mathrm{d} 03) \\
\mathrm{s} 08-\mathrm{s} 15 & (\mathrm{~d} 04-\mathrm{d} 07) \\
\mathrm{s} 16-\mathrm{s} 23 & (\mathrm{~d} 08-\mathrm{d} 11) \\
\mathrm{s} 24-\mathrm{s} 31 & (\mathrm{~d} 12-\mathrm{d} 15)
\end{array}
$$

We will call the first bank (bank 0: s0-s7 = d0-d3) the scalar bank, while the remaining three are vectorial banks (below we will see why).

VFP Registers

Figure 14.1

The VFPv2 provides three control registers but we will only be interested in one called fpscr. This register is similar to the cpsr as it keeps the usual comparison flags N, Z, C and V. It also stores two fields that are very useful, len and stride. These two fields control how floating point instructions behave. We will not care very much about the remaining information in this register: status information of the floating point exceptions, the current rounding mode and whether denormal numbers are flushed to zero.

14.2 Arithmetic operations

Most VFPv2 instructions are of the form fname Rdest, Rsource1, Rsource2 or fname Rdest, Rsource1. They have three modes of operation.

- Scalar: This mode is used when the destination register Rdest is in bank 0 : (s0-s7 or d0-d3). In this case, the instruction operates only with Rsource1 and Rsource2. No other registers are involved.
- Vectorial: This mode is used when the destination register Rdest and Rsource2 (or Rsource1 for instructions with only one source register) are not in bank 0 . In this case the instruction will operate on as many registers (starting from the given register in the instruction and wrapping around the bank of the register) as defined in field len of the fpscr (at least 1). The next register operated on is defined by the stride field of the fpscr (at least 1). If wrap-around happens, no register can be operated on twice.
- Scalar expanded (also called mixed vector/scalar): This mode is used if Rsource2 (or Rsource1 if the instruction only has one source register) is in bank 0, but the destination is not. In this case Rsource2 (or Rsource1 for instructions with only one source) is left fixed as the source. The remaining registers are operated on as in the vectorial case (that is, using len and stride from the fpscr).

This looks rather complicated, so let's see some examples. Most instructions have a suffix of .f32 if they operate on single-precision and .f64 if they operate on doubleprecision numbers. We can add two single-precision numbers using

```
vadd.f32 Rdest, Rsource1, Rsource2
```

and two double-precision numbers using

```
vadd.f64 Rdest, Rsource1, Rsource2
```

Note also that we can use predication in these instructions (but be aware that, as usual, predication uses the flags in cpsr not in fpscr). Predication would be specified before the suffix as in vaddne.f32.

```
/* In the following examples, assume that len = 4, stride = 2 */
vadd.f32 s1, s2, s3 /* s1 <- s2 + s3. Scalar operation because
    Rdest = s1 is in bank 0 */
vadd.f32 s1, s8, s15 /* s1 <- s8 + s15. Same as previous */
vadd.f32 s8, s16, s24 /* s8 <- s16 + s24
    s10 <- s18 + s26
    s12 <- s20 + s28
    s14 <- s22 + s30
    or more compactly {s8,s10,s12,s14} <-
                        {s16,s18,s20,s22} + {s24,s26,s28,s30}
    Vectorial, since Rdest and Rsource2
    are not in bank 0
    */
vadd.f32 s10, s16, s24 /* {s10,s12,s14,s8} <-
    {s16,s18,s20,s22} + {s24,s26,s28,s30}
    Vectorial, but note the wraparound
    inside the bank after s14.
    */
```

vadd.f32 s8, s16, s3 /* \{s8,s10,s12,s14\} <-
$\{s 16, s 18, s 20, s 22\}+\{s 3, s 3, s 3, s 3\}$
Scalar expanded since Rsource2 is in bank 0 */

14.3 Load and Store

Once we have a rough idea of how we can operate floating points in VFPv2, a question remains: how do we load/store floating point values from/to memory? VFPv2 provides several specific load/store instructions.

We load/store one single-precision floating point using vldr/vstr. The address of the datum must already be in a general purpose register, although we can apply an offset in bytes which must be a multiple of 4 (this applies to double-precision as well).

```
vldr s1, [r3] @ s1 <- *r3
vldr s2, [r3, #4] @ s2 <- *(r3 + 4)
vldr s3, [r3, #8] @ s3 <- *(r3 + 8)
vldr s4, [r3, #12] @ s3 <- *(r3 + 12)
vstr s10, [r4] @ *r4 <- s10
vstr s11, [r4, #4] @ *(r4 + 4)<- s11
vstr s12, [r4, #8] @ *(r4 + 8) <- s12
vstr s13, [r4, #12] @ *(r4 + 12) <- s13
```

We can load/store several registers with a single instruction. In contrast to general load/store, we cannot load an arbitrary set of registers but instead they must be a sequential set of registers.

```
/*
    Here precision can be s or d for single-precision or double-precision.
    The floating-point-register-set is {sFirst-sLast} for
        single-precision and {dFirst-dLast} for double-precision.
*/
    vldm indexing-mode precision Rbase{!}, floating-point-register-set
    vstm indexing-mode precision Rbase{!}, floating-point-register-set
```

The behavior is similar to the indexing modes we saw in Chapter 8. There is an Rbase register used as the base address of several load/store to/from floating point registers. There are only two indexing modes: increment after and decrement before. When using increment after, the address used to load/store the floating point value register is increased by 4 after the load/store has happened. When using decrement before, the base address is first decremented by as many bytes as floating point values are going to be loaded/stored. Rbase is always updated by decrementing before but it is optional to update it by incrementing after.

```
vldmias r4, \(\{s 3-s 8\} \quad / * s 3<-* r 4\)
    \(s 4<-*(r 4+4)\)
    s5 <- * \((r 4+8)\)
    \(s 6<-*(r 4+12)\)
    \(s 7<-*(r 4+16)\)
    s8 <- * \((r 4+20)\)
        */
vldmias r4!, \{s3-s8\} /* Like the previous instruction
    but at the end r4 <- r4 + 24
    */
vstmdbs r5!, \{s12-s13\} /* *(r5 - 4 * 2) <- s12
    * (r5 - 4 * 1) <- s13
    r5 <- r5 - \(4 * 2\)
*/
```

For the usual stack operations when we push onto the stack several floating point registers we will use vstmdb with sp! as the base register. To pop from the stack we will use vldmia again with sp ! as the base register. Given that these instructions names are very hard to remember we can use the mnemonics vpush and vpop, respectively.
vpush \{s0-s5\} /* Equivalent to vstmdb sp!, \{s0-s5\} */
vpop \{s0-s5\} /* Equivalent to vldmia sp!, \{s0-s5\} */

14.4 Movements between registers

Another operation that may be required is moving data between registers. Similar to the mov instruction for general purpose registers, there is the vmov instruction. Several movements are possible.

We can move floating point values between two floating point registers of the same precision:

```
vmov s2, s3 /* s2 <- s3 */
vmov d3, d4 /* d3 <- d4 */
```

We can also move data between one general purpose register and one single-precision register as follows. Note, however, that the data is not converted. Only bits are copied, so be careful not to mix floating point values with integer instructions or the other way around.

```
vmov s2, r3 /* s2 <- r3 */
vmov r4, s5 /* r4 <- s5 */
```

Similar to the previous case but between two general purpose registers and two consecutive single-precision registers we have:

```
vmov s2, s3, r4, r10/* s2 <- r4
    s3 <- r10 */
```

Finally, consider moving between two general purpose registers and one double-precision register. Again, note that the data are not converted.
vmov d3, r4, r6 /* Lower32Bits0f(d3) <- r4; Higher32Bits0f(d3) <- r6 */ vmov r5, r7, d4 /* r5 <- Lower32Bits0f(d4); r7 <- Higher32Bits0f(d4) */

14.5 Conversions

Sometimes we need to convert from an integer to a floating-point and the reverse. Note that some conversions may potentially lose precision, in particular when a floating point is converted to an integer. There is a single instruction vcvt with a suffix .T.S where T (target) and S (source) can be u32, s32, f32 or f64 (S must be different from T). Both registers must be floating point registers, so in order to convert an integer to a floating point or a floating point to an integer value an extra vmov instruction will be required from or to an integer register before or after the conversion. Because of this, for a moment (between the two instructions) a floating point register will contain a value which is not an IEEE 754 value; bear this in mind. Here are some examples:

```
vcvt.f64.f32 d0, s0 /* Converts a single-precision value in s0 to a
    double-precision value and stores it in dO */
vcvt.f32.f64 s0, d0 /* Converts a double-precision value in d0 to a
    single-precision value and stores it in s0 */
vmov s0, r0 /* Bit copy from integer register r0 to s0 */
vcvt.f32.s32 s0, s0 /* Converts a signed integer value in s0 to a
    single-precision value and stores it in s0 */
vmov s0, r0 /* Bit copy from integer register r0 to s0 */
vcvt.f32.u32 s0, s0 /* Converts an unsigned integer value in s0 to a
    single-precision value and stores in s0 */
vmov s0, r0 /* Bit copy from integer register r0 to s0 */
vcvt.f64.s32 d0, s0 /* Converts a signed integer value in r0 to a
    double-precision value and stores in dO */
vmov s0, r0 /* Bit copy from integer register r0 to s0 */
vcvt.f64.u32 d0, s0 /* Converts an unsigned integer value in s0 to a
    double-precision value and stores in d0 */
```


14.6 Modifying the fpscr

The special register fpscr, where len and stride are set, cannot be modified directly. Instead we have to load fpscr into a general purpose register using the vmrs instruction. Then we operate on the register and move it back to the fpscr, this time using the vmsr instruction.

The value of len is indirectly stored in bits 16 to 18 of the fpscr. The value of len is not directly stored in those bits. Instead, we have to subtract 1 before setting the bits. This is because len cannot be 0 (it does not make sense to operate 0 floating points). This way the value 000 in these bits means len $=1,001$ means len $=2, \ldots, 111$ means len $=8$. The following is an example of code that sets len to 8 .
/* Set the len field of fpscr to be 8 (bits: 111) */
mov r5, \#7 @ r5 <- 7.7 is 111 in binary
mov r5, r5, LSL \#16 @ r5 <- r5 << 16
vmrs r4, fpscr @ 4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5. Bitwise OR
vmsr fpscr, r4 @ fpscr <- r4
The value of stride is indirectly stored in bits 20 to 21 of fpscr in a manner similar to len: a value of 00 in these bits means stride $=1$, 01 means stride $=2,10$ means stride $=3$ and 11 means stride $=4$.

14.7 Function call convention and floating-point registers

Since we have introduced new registers we should state how to use them when calling functions. The following rules apply for VFPv2 registers.

- Fields len and stride of fpscr are zero at the entry of a function and must be zero when leaving it.
- We can pass floating point parameters using registers s0-s15 and d0-d7. Note that passing a double-precision after a single-precision may involve discarding an odd-numbered single-precision register (for instance we can use s0, and d1 but note that s1 will be unused).
- All other floating point registers (s16-s31 and d8-d15) must have their values preserved upon leaving the function. Instructions vpush and vpop can be used for that.
- If a function returns a floating-point value, the return register will be s0 or d0.

Finally a note about functions like printf that can take a variable number of arguments: you cannot pass a single-precision floating point to one of such functions. Only doubles
can be passed. So you will need to convert the single-precision values into doubleprecision values. Note also that usual integer registers are used (r0-r3), so you will only be able to pass up to 2 double-precision values in registers, the remaining must be passed on the stack. In particular for printf, since r0 contains the address of the string format, you will only be able to pass a single double-precision number in $\{\mathrm{r} 2, \mathrm{r} 3\}$ and any others on the stack.

14.8 Printing Floating-point Numbers

We will continue to use the C function printf to print values but its behavior for floating-point numbers is a bit different as described above. First of all, it only prints double-precision numbers. Since r0 contains, as before, the address of the ASCII string giving the format information, we will have to store the first value to be printed in $\{r 2, r 3\}$. Additional values to be printed must be placed on the stack as usual. The code for one value would be

```
ldr r0, =format
vmov r2, r3, Dx @ x is the number of the register holding the value
bl printf
```


Assembler Note

Make sure you pass the flag -mfpu=vfpv2 to the assembler as, otherwise it will not recognize the VFPv2 instructions.

Projects

1. Try out various combinations of conversions.
2. Modify earlier programs that worked for integers so that they can handle floatingpoint numbers. In particular, functions in such programs as factorial and Fibonacci were limited by the size of integers. How much larger values will work if we are using floating-point numbers?
3. See Appendix C for a very long but valuable example of Matrix Multiplication for floating-point numbers.
4. Try out various combinations of len and stride and test the results.

15 Pointers

In Chapter 9 we saw the basics of how to call a function. In this chapter we will cover more topics related to functions.

15.1 Passing data to functions

We already know how to call a function and pass it parameters. We also know how to return data from a function. Nevertheless, there are some issues which we have not fully solved yet.

- Passing large amounts of data
- Returning more than one piece of data

There are several ways to tackle these problems, but most of them involve pointers. Pointers are dreaded by many people who do not fully understand them, but they are a crucial part of the way computers work. That said, most of the troubles with pointers are actually related to using dynamic memory rather than the pointers themselves. We will not consider dynamic memory here.

15.2 What is a pointer?

A pointer is some location in memory the contents of which are simply the address of ("points to") some location in memory.

This definition may be confusing, but we have already been using pointers in previous chapters. It is just that we usually did not name them that way. We usually talked about addresses and/or labels in the assembler. Consider this very simple program:

```
/* first_pointer.s */
.data
Number1: .word 3
.text
```

```
.globl main
main:
    ldr r0, pointerToNumber1 @ r0 <- &Number1
    ldr r0, [r0] @ r0 <- *r0. So r0 <- Number1 */
    bx lr
pointerToNumber1: word Number1 @ The address of Number1
```

As you can see, we deliberately used the name pointerToNumber1 to express the fact that this location in memory is actually a pointer. It is a pointer to Number1 because it holds the address of Number1.

Imagine we add another number, let's call it Number2 and want pointerToNumber1 to be able to point to Number2, that is, contain the address of Number2 as well. Let's make a first attempt.

```
.data
Number1 : .word 3
Number2 : .word 4
.text
.globl main
main:
        ldr r1, addressOfNumber2 @ r1 <- &Number2
        str r1, pointerToNumber1 @ pointerToNumber <- r1,
            @ this is pointerToNumber_1 <- &Number2
        bx lr
pointerToNumber_1: .word Number1
addressOfNumber_2: .word Number2
```

But if you run this you will get a rude Segmentation fault. We cannot actually modify pointerToNumber1 because, even if it is a memory location that contains an address (and it would contain another address after the store) it is not in the data section, but in the text section. So this is a statically defined pointer, whose value (i.e., the address it contains) cannot change. So, how can we have a pointer that can change? Well, we will have to put it in the data section, where we usually put all the data of our program.

```
.data
number_1: .word 3
number_2: .word 4
pointer_to_number: .word 0
```

```
.text
.globl main
main:
    ldr r0, addr_of_pointer_to_number @ r0 <- &pointer_to_number
    ldr r1, addr_of_number_2 @ r1 <- &number_2
    str r1, [r0] @ *r0 <- r1.
        /* This is actually pointer_to_number <- &number_2 */
    ldr r1, [r0] @ r1 <- *r0.
        /* This is actually r1 <- pointer_to_number
            Since pointer_to_number has the value &number_2
                        then this is like r1 <- &number_2 */
    ldr r0, [r1] @ r0 <- *r1
        /* Since r1 had as value &number_2 then this is
        like r0 <- number_2 */
    bx lr
addr_of_number_1: .word number_1
addr_of_number_2: .word number_2
addr_of_pointer_to_number: .word pointer_to_number
```

From this last example several things should be clear. We have static pointers to number_1, number_2 and pointer_to_number (called, respectively, addr_of_number_1, addr_of_number_2 and addr_of_pointer_to_number). Note that the rather complicated addr_of_pointer_to_number is actually a pointer to a pointer! Why are these pointers statically defined? Well, we can name memory locations (i.e., addresses) using labels (this way we do not have to really know the exact address and at the same time we can use a descriptive name). These memory locations, named through labels, will never change during the execution of the program so they are somehow predefined before the program starts. That is why the addresses of number_1, number_2 and _pointer_to_number are statically defined and stored in a part of the program that cannot change (the .text section cannot be modified when the program runs).

This means that accessing pointer_to_number using addr_of_pointer_to_number involves using a pointer to a pointer. Nothing fancy here, a pointer to a pointer is just a memory location that contains the address of another memory location that we know contains a pointer too.

The program simply loads the value 4 , stored in number_2 using pointer_to_number. We first load the address of the pointer (this is, the pointer to the pointer, but the address of
the pointer may be clearer) into r0. Then we do the same with the address of number_2, storing it in r 1 . Then in we update the value pointer_to_number (remember, the value of a pointer will always be an address) with the address of number_2. Finally, we actually get the value of pointer_to_number loading it into r1. It is important to understand: the value of pointer_to_number is an address, so now r1 contains an address. That is the reason why we can then load into $r 0$ the value in the location described in $r 1$.

See Section 3.7 for the fact that as will handle the pointers for us in a simpler way than what we have been using.

15.3 Passing large amounts of data

When we pass data to functions we follow the conventions defined in the AAPCS. We try to fill the first 4 registers r0 to r3. If more data is expected we must use the stack. That means that if we were to pass a large amount of data to a function we may end up spending more time just preparing the call (setting registers r0 to r3 and then pushing all the data on top of the stack; and remember, in reverse order!) rather than running the code of the function itself.

There are several cases when this situation arises. In a language like C, all parameters are passed by value. That means that the function receives a copy of the value. This way the function may freely modify this value and the caller will not see any changes in it. This may seem inefficient but from a productivity point of view, a function that does not cause any side effect to its inputs may be regarded as easier to understand than one that does.

```
struct A
{
    @ big structure
};
/* This function returns a value of type 'some_type'
    when passed an object of type 'struct'. */
some_type compute_something(struct A);
void my_code(void)
{
    struct A a;
    some_type something;
    a = ...;
    something = compute_something(a)
    /* a is unchanged here! */
}
```

Note that in C, array types are not passed by value but this is by design: there are no array values in C although there are array types (you may need to repeat to yourself this last sentence several times before fully understanding it).

If our function is going to modify the parameter and we do not want to see the changes after the call, there is little that we can do. We have to invest some time in the parameter passing.

But what if our function does not actually modify the data? Or, what if we are interested in the changes the function did? Or even better, what if the parameter being modified is actually another output of the function?

Well, all these scenarios involve pointers.

15.4 Passing a big array by value

Consider an array of 32 -bit integers and we want to sum all the elements. Our array will be in memory, it is just a contiguous sequence of 32 -bit integers. We want to pass, somehow, the array to the function (together with the length of the array if the length may not be constant), sum all the integers and return the sum. Note that in this case the function does not modify the array, it just reads it.

Let's define a function sum_array_value that must have the array of integers passed by value. The first parameter, in $r 0$ will be the number of items of the integer array. Registers r1 to r3 may (or may not) have a value depending on the number of items in the array. So the first three elements must be handled differently. Then, if there are still items left, they must be loaded from the stack.

```
sum_array_value: /* We have passed all the data by value */
    push {r4, r5, r6, lr}
    /* r4 will hold the sum so far */
    mov r4, #0 @ r4 <- 0
    /* In r0 we have the number of items of the array */
    cmp r0, #1 @ r0 - #1 and update cpsr
    blt End_of_sum_array @ if r0 < 1 branch to End_of_sum_array
    add r4, r4, r1 @ add the first item
    cmp r0, #2 @ r0 - #2 and update cpsr
    blt End_of_sum_array @ if r0 < 2 branch to End_of_sum_array
    add r4, r4, r2 @ add the second item
    cmp r0, #3 @ r0 - #3 and update cpsr
```

```
blt End_of_sum_array @ if r0 < 3 branch to End_of_sum_array
add r4, r4, r3 @ add the third item
/*
    The stack at this point looks like this
    |)
    | big_array[255] |
    | big_array[4]
    | big_array[3] | <- this is sp + 16 (we want r5 to point here)
    | r4 | <- this is sp + 12
    | r5 | <- this is sp + 8
    | r6 | <- this is sp + 4
    | lr | <- sp points here
    | |
    | | (lower addresses)
    keep in r5 the address where the stack-passed
    portion of the array starts
*/
add r5, sp, #16 @ r5 <- sp + 16
/* in register r3 we will count how many items we have read
    from the stack.
*/
mov r3, #0
/* in the stack there will always be up to 3 less items because
    the first 3 are already passed in registers
    (recall that r0 had how many items were in the array)
*/
sub r0, r0, #3
b Check_loop_sum_array @ while loop with check first
Loop_sum_array:
    ldr r6, [r5, r3, LSL #2] @ r6 <- *(r5 + r3 * 4)
    /* load the array item r3 from the stack */
    add r4, r4, r6 @ r4 <- r4 + r6
```

```
    /* accumulate in r4 */
    add r3, r3, #1 @ r3 <- r3 + 1
    /* move to the next item */
    Check_loop_sum_array:
    cmp r3, r0 @ r0 - r3 and update cpsr */
        blt Loop_sum_array @ if r3 < r0 branch to Loop_sum_array */
End_of_sum_array:
    mov r0, r4 @ r0 <- r4, to return the value of the sum */
    pop {r4, r5, r6, lr}
    bx lr
```

The function is not particularly complex except for the special handling of the first 3 items (stored in r1 to r3) and that we have to be careful when locating elements of the array inside the stack. Upon entering the function the items of the array passed through the stack are laid out consecutively starting from sp. The push instruction at the beginning pushes onto the stack four registers (r4, r5, r6 and lr) so our array is now in $\mathrm{sp}+16$ (see the diagram) and is eight byte aligned. Beside these details, we just loop through the items of the array and accumulate the sum in register r4. Finally, we move $r 4$ into $r 0$ for the return value of the function.

In order to call this function we have to put an array into the stack. Consider the following program.

```
.data
big_array:
.word 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
.word 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
.word 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
.word 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
.word 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
.word 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102
.word 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
.word 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
message: .asciz "The sum of 0 to 127 is %d\n"
.text
.globl main
sum_array_value :
    /* code shown above */
```

main:
push \{r4, r5, r6, r7, r8, lr\}
/* we will not use r8 but we need to
keep the function 8-byte aligned */
ldr r4, =big_array
/* Prepare call */
mov r0, \#128 @ r0 <- 128
/* Load in the 1st parameter the number of items */
ldr r1, [r4] © load in the 2nd parameter the 1st array item
ldr r2, [r4, \#4] @ load in the 3rd parameter the 2nd array item ldr r3, [r4, \#8] @ load in the 4th parameter the 3rd array item
/* before pushing anything in the stack keep its position */ mov r7, sp
/* We cannot use more registers, now we have to push them onto the stack (in reverse order) */
mov r5, \#127 @ r5 <- 127
/* This is the last item position (note that the first would be in position 0) */
b Check_pass_parameter_loop @ while loop testing first

Pass_parameter_loop:
ldr r6, [r4, r5, LSL \#2] @ r6 <- *(r4 + r5 * 4).
/* loads the item in position r5 into r6. Note that we have to multiply by 4 because that is the size of each item in the array */
push \{r6\} @ push the loaded value to the stack */ sub r5, r5, \#1
/* we are done with the current item, go to the previous index of the array */

Check_pass_parameter_loop:
cmp r5, \#2 @ compute r5 - \#2 and update cpsr
bne Pass_parameter_loop @ if r5 != \#2 => Pass_parameter_loop
/* We are done, we have passed all the values of the array, now call the function $* /$
bl sum_array_value @ Finally we call the function

```
/* restore the stack position */
mov sp, r7
/* prepare the call to printf */
mov r1, r0 /* second parameter, the sum itself */
ldr r0, =message /* first parameter, the message */
bl printf
pop {r4, r5, r6, r7, r8, lr}
bx lr
```

We start by preparing the call to sum_array_value. The first parameter, passed in register r 0 , is the number of items of this array (in the example hardcoded to 128 items). Then we pass the first three items of the array (if there are that many) in registers r1 to r3. Any remaining items must be passed on the stack. Remember that in a stack the last item pushed will be the first popped, so if we want our array be laid in the same order we have to push it in backwards. So we start from the last item, the mov r5, \#127, and then we load every item and push it onto the stack. Once all the elements have been pushed onto the stack we can finally call sum_array_value.

A very important caveat when manipulating the stack in this way is that it is critical to restore it and leave it in the same state as it was before preparing the call. This is the reason we keep sp in $r 7$ before pushing anything onto the stack and we restore it right after the call to sum_array_values. Forgetting to do this will make further operations on the stack push data onto the wrong place or pop the wrong data from the stack. Keeping the stack synchronized is essential when calling functions.

15.5 Passing a big array by reference

Now you are probably thinking that passing a big array through the stack (along with all the boilerplate that this requires) to a function that does not modify it, is, to say the least, wasteful.

Note that, when the amount of data is small, registers r0 to r3 are usually enough, so pass by value is affordable. Passing some data in the stack is fine too, but passing big structures on the stack may harm the performance (especially if our function is being called lots of times).

Can we do better? Yes. Instead of passing copies of the values of the array, would it be possible to pass the address of the array? The answer is, again, yes. This is the concept of pass by reference. When we pass by value, the value of the data passed is somehow copied (either in a register or a stack). Here we will pass a reference (i.e., an address)
to the data. So now all we need do is just pass the number of items and then the address of the array, and let the function use this address to perform its computation.

Consider the following program, which also sums an array of integers but now passing the array by reference.

```
.data
big_array:
    /* Same as above */
message: .asciz "The sum of 0 to 255 is %d\n"
.text
.globl main
sum_array_ref: /* We have passed all the data by reference */
    /* Parameters:
        r0 = Number of items
        r1 = Address of the array
    */
    push {r4, r5, r6, lr}
    mov r4, #0 @ r4 <- 0 @ the sum so far
    mov r5, #0 @ r5 <- 0 @ number of items processed
    b Check_loop_array_sum @ while loop, check first
    Loop_array_sum:
        ldr r6, [r1, r5, LSL #2] @ r6 <- *(r1 + r5 * 4)
        add r4, r4, r6 @ r4 <- r4 + r6
        add r5, r5, #1 @ r5 <- r5 + 1
    Check_loop_array_sum:
        cmp r5, r0 @ r5 - r0 and update cpsr
        bne Loop_array_sum @ if r5 != r0 go to Loop_array_sum
    mov r0, r4 @ r0 <- r4, to return the value of the sum
    pop {r4, r5, r6, lr}
    bx lr
```

main:
push \{r4, lr\}
/* we will not use r4 but we need

```
to keep the stack 8-byte aligned */
    mov r0, #128
    ldr r1, =big_array
    bl sum_array_ref
    /* prepare the call to printf */
    mov r1, r0 @ second parameter, the sum itself
    ldr r0, =message @ first parameter, the message
    bl printf
    pop {r4, lr}
    bx lr
```

Now the code is much simpler (and faster) as we avoid copying the values of the array in the stack. We simply pass the address of the array as the second parameter of the function and then we use it to access the array and compute the sum.

15.6 Modifying data through pointers

We saw at the beginning of this chapter that we could modify data through pointers. If we pass a pointer to a function we can let the function modify it as well. Imagine a function that takes an integer and increments it. We could do this by returning the value, for instance.

```
increment:
    add r0, r0, #1 @ r0 <- r0 + 1
```

This takes the first parameter (in $r 0$) increments it and returns it (recall that we return integers in r0).

An alternative approach, could be receiving a pointer to some data and let the function increment the data at the position defined by the pointer.

```
increment_ptr:
    ldr r1, [r0] @ r1 <- *r0
    add r1, r1, #1 @ r1 <- r1 + 1
    str r1, [r0] @ *r0 <- r1
```

For a more elaborate example, let's revisit the array code above but this time instead of computing the sum of all the values, we will multiply each item by two and keep it in the same array. To prove that we have modified it, we will also print each item.
/* double_array.s */

```
.data
```

big_array:
/* Same as above */
message: .asciz "Item at position \%d has value \%d\n"
.text
double_array:
/* Parameters:
r0 Number of items
r1 Address of the array
*/
push \{r4, r5, r6, lr\}
mov r4, \#0 @ r4 <- 0
b Check_loop_array_double
Loop_array_double:
ldr r5, [r1, r4, LSL \#2] @ r5 <- *(r1 + r4 * 4)
mov r5, r5, LSL \#1 @ r5 <- r5 * 2 @ double
str r5, [r1, r4, LSL \#2] © *(r1 + r4 * 4) <- r5
add $\mathrm{r} 4, \mathrm{r} 4$, \#1 @ $\mathrm{r} 4<-\mathrm{r} 4+1$
Check_loop_array_double:
cmp r4, r0 @ r4 - r0 and update cpsr
bne Loop_array_double @ if r4 != r0 go to Loop_array_double
pop $\{r 4, r 5, r 6,1 r\}$
bx lr
print_each_item:
push \{r4, r5, r6, r7, r8, lr\} /* r8 is unused */
mov r4, \#0 @ r4 <- 0
mov r6, r0 @ r6 <- r0. Keep r0 because we will overwrite it
mov r7, r1 @ r7 <- r1. Keep r1 because we will overwrite it
b Check_loop_print_items
Loop_print_items:
ldr r5, [r7, r4, LSL \#2] @ r5 <- * $\mathrm{r} 7 \mathrm{r}+\mathrm{r} 4 * 4)$

```
        /* Prepare the call to printf */
        ldr r0, =message @ 1st parameter of the call to printf
        mov r1, r4 © 2nd parameter: item position
        mov r2, r5 @ 3rd parameter: item value
        bl printf @ call printf
    add r4, r4, #1 @ r4 <- r4 + 1
    Check_loop_print_items:
    cmp r4, r6 @ r4 - r6 and update cpsr
    bne Loop_print_items @ if r4 != r6 goto Loop_print_items
    pop {r4, r5, r6, r7, r8, lr}
    bx lr
.globl main
main:
    push {r4, lr}
    /* we will not use r4 but we need
    to keep the stack 8-byte aligned */
    /* first call print_each_item */
    mov r0, #128 @ 1st parameter: number of items
    ldr r1, =big_array @ 2nd parameter: address of the array
    bl print_each_item @ call to print_each_item
    /* call to double_array */
    mov r0, #128 @ 1st parameter: number of items
    ldr r1, =big_array @ 2nd parameter: address of the array
    bl double_array @ call to double_array
    /* second call print_each_item */
    mov r0, #128 @ 1st parameter: number of items
    ldr r1, =big_array @ 2nd parameter: address of the array
    bl print_each_item @ call to print_each_item
    pop {r4, lr}
    bx lr
```

If you run this program you will see that the items of the array have been effectively doubled.

Item at position 123 has value 123
Item at position 124 has value 124
Item at position 125 has value 125

```
Item at position 126 has value 126
Item at position 127 has value 127
Item at position 0 has value 0
Item at position 1 has value 2
Item at position 2 has value 4
Item at position 3 has value 6
Item at position 4 has value 8
```


15.7 Returning more than one piece of data

Functions, per the AAPCS convention, return their values in register r0 (and r1 if the returned item is 8 bytes long). We can return more than one thing if we just pass a pointer to some storage (possibly in the stack) as a parameter to the function. Some elementary practice with this idea appears in the Projects.

Projects

1. Modify the isort.s program to sort a file inplace passing the address of the file as a parameter.
2. Write some programs that demonstrate returning more than one piece of data from a function.
3. Write some programs that demonstrate printing an array of floats.

16 System Calls

In Chapter 9 we saw the basics of how to call on Input/Output (I/O) functions available through the C compiler. We used scanf(), printf(), puts() and, as C programmers, we know there are many more such functions. They may, and should, be used by assembler programmers.

In embedded systems, however, we may find ourselves limited to using the assembler and loader without the assistance of the C compiler. In the Projects in Chapter 1 we mentioned how to perform the operations of assembling, linking/loading, and executing programs directly. Looking back there we note another assembler operator: svc. The mnemonic stands for SerVice Call. Closely related is the operator swi standing for SoftWare Interrupt.

Although swi has been generally replaced by the equivalent svc, it still works and actually makes it easier to explain its function. The idea is that while the processor of your computer is running your program, it is (and must be) able to handle interruptions by the hardware. For example, while computing your Fibonacci numbers, it must be able to react to a keystroke or a message from your printer. The system must carefully interrupt what it has been doing, handle the interruption (do whatever is necessary to respond), and then go back to doing your calculations.

We will look at these hardware interrupts later. Now we will consider the obvious other kind of interrupt, the software interrupt. In that case, your program has in it code to ask the processor to interrupt its usual flow of instructions and perform some code written into the Operating System (Raspbian for us).

There is a very long list of such code (functions) that are available and a search of the web will let you find out what they all are. For us, only a few are of immediate interest. For example, the method of exiting a program was described in Chapter 1 and involves - as in all cases - storing in $r 7$ the number of the service desired ($\# 1$ in the case of exit) and then issuing the instruction svc 0.

In this chapter we will cover a few other services available, particularly those associated with file I/O functions. We will not use the C compiler in our examples.

16.1 File I/O

Let's look at the basic operations of opening a file, reading and/or writing from/to a file, and, finally, closing a file. The following program also uses our monitor and keyboard.

```
01 /* -- create.s -- */
02
03 .text
04 .global _start @ assemble, link/load, execute this code
05_start: @ see Chapter 1 Projects for instructions
06 push {r4, lr}
0 7
08 /* OPEN (CREATE) FILE */
09 ldr r0, =newfile
10 mov r1, #0x42 @ create R/W
11 mov r2, #384 @ = 600 octal (me)
12 mov r7, #5 @ open (create)
13 svc 0
14
15 cmp r0, #-1 @ file descriptor
16
1 7
18
1 9
20 /* PROMPT (WRITE) */
21
    mov r0, #1 @ stdout (monitor)
    ldr r1, =prompt @ address of prompt
    mov r2, #(promptend - prompt) @ length of prompt
    mov r7, #4 @ write
    svc 0
/* READ */
    mov r0, #0 @ stdin (keyboard)
    ldr r1, =buffer @ address of buffer
    mov r2, #26 @ maximum length of input
    mov r7, #3 @ read
    svc 0
    mov r5, r0 @ save number of characters
34
35 /* WRITE TO FILE */
36 mov r0, r4 @ file_descriptor
37 ldr r1, =buffer @ address of buffer
38 mov r2, r5 @ length from read
39 mov r7, #4 @ write
```

```
40 svc 0
4 1
42 /* CLOSE FILE */
43 mov r7, #6 @ close
4 4
45 mov r0, r4 @ return file_descriptor as error code
4 6
47 exit: pop {r4, lr}
48 mov r7, #1 @ exit
4 9
50
51 err: mov r4, r0
52 mov r0, #1
53 ldr r1, =errmsg
54 mov r2, #(errmsg - errmsgend)
55 mov r7, #4
56 svc 0
5 7
58 mov r0, r4
59 b exit
60
61 .data
6 2
63 errmsg: .asciz "create failed"
6 4 \text { errmsgend:}
6 5 \text { newfile: .asciz "/home/pi/code/newfile"}
66 prompt: .asciz "Input a string: \n"
6 7 \text { promptend:}
6 8 \text { buffer: .byte 100}
```

Here are descriptions of the operations performed in this sample program.
In lines 9-13 we create a new file. We use the OPEN operation which is service call \#5 placed in $r 7$. The parameters for that call are as follows. $r 0$ contains the address of a string with the fully qualified name of the desired file. r1 contains some flags (bits) to describe what type of file it is to be. In hex they are concatenated together with $0=$ read-only, $1=$ write-only, and $2=$ read and write. In addition, $0 x 40=$ create if the file does not exist. Thus, we use 0×42 for a file which allows both reading and writing and, in addition, will be created if it does not exist.

Finally, in r2 we put some permission bits. The value we must insert is based on the Raspbian history of being a LINUX based system. File management in UNIX divided users up into three categories: owner, group, others. The permissions also included three classes: Read, Write, and eXecute. The command ls -la gives a listing of files and shows on the left their permissions in the form of a string such as rwxrwxrwx. It
is preceded by a " d " if it is a directory, while a "-" indicates the permission is lacking. Looking at that string as a nine bit binary number, we can set permissions for the three classes going left to right. In our example we used $600_{O C T}$ to indicate read and write permissions for the user (me) [note that 700 would have allowed execution also]. We gave no permissions to the group or others (but could have).

This OPEN operation returns (in r0 of course) a number which is called the file descriptor. It is by that number that one refers to the file in the future. If there is an error while trying to OPEN the file, it returns -1 so the user can handle the problem.

The WRITE operation in lines 21-25 uses the service call \#4 in r7. The parameters are: In $r 0$ is the file descriptor \#1 which is always the stdout; i.e., the monitor. In r1 we put address of the string we want to display. Finally, in r2 we put how many characters we want to write. In our case we let the assembler calculate how many characters there are in our prompt (it can do that!) since we might change the prompt later and the calculation method avoids human error in counting again.

The READ in lines 28-33 uses the service call \#3 in r7. The parameters are similar to the WRITE operation. In r0 we place the file descriptor \#0 which is always the stdin; i.e., the keyboard. In r1 we put the address of where we want to place the input string. Finally, in r2 we put how many characters (at most) we want to read. Note that in line 68 we made room for 100 bytes (just in case) and then only asked for 26 characters on line 30 (for no particular reason).

The READ operation returns the number of characters actually read (before the carriage return) and we saved that number in r5 on line 33. Since we had room in buffer, we might have allowed it to try to read more characters.

The interesting WRITE TO FILE operation on lines $36-40$ shows how easy it is to perform the task. Since it is a WRITE we again use service call \#4. As before r0 contains the file descriptor but this time it is the one returned by the OPEN (CREATE) and saved in $r 4$. $r 1$ gets the address of the buffer where the string to be written is. r2 gets the number of characters we want to write that we saved in r5.

When programming in a high-level language such as C or Python, users often expect and use the fact that when their program terminates all the files they used are carefully saved by the operating system. For assembler language programmers we might be more aware of how systems actually operate and be wary of any assumptions. It is possible that when we think we are writing to a file we are actually only writing the information into a buffer maintained by the operating system so that it can optimize its accesses to the file by waiting for additional data.

While it's usually not necessary, for good programming practice we should CLOSE the file when we are done with it, thus telling the system to make sure all data has been saved. It's very simple. As on lines 43-45, we merely use service call \#6 with r0 containing the file descriptor for the file (here we assume it's still there from line 36).

Obviously we have included some code to handle a case where the OPEN (CREATE) operation did not succeed.

16.2 Iseek

The system calls we have described in detail can be given in C notation as follows:

```
int open ( char* full_path_name , int flags , int permissions );
int write ( int file_descriptor , char* buffer , int length );
int read ( int file_descriptor , char* buffer , int length );
void close ( int file_descriptor );
```

Another very valuable call useful when reading and writing files is lseek. It allows us to move to a particular spot in a file. Without it, we might have to start at the beginning of every file and then read through the file until reaching the data we want and then we still might not be able to change the data without further complications.

The form of this call in C is

```
int lseek ( int file_descriptor , int offset , int mode );
```

The file_descriptor is, of course, the one we used before associated with the file. The values of mode can be 0,1 , or 2 . The offset is the number of bytes to move depending on the mode. If the mode is 0 , then the offset is from the beginning of the file. If mode is 1 , then the offset is from the present position in the file. Finally, if mode is 2 , the offset is relative to the end of the file.

The system call associated with this C function is \#19. The parameters can be figured out by looking at the above functions and the C prototype.

Note that this function allows us to go directly to the end of a file and append additional data when we open the file by concatenating 0×400 to the flags on line 10 of our create.s code.

Projects

1. Modify the isort.s program to sort a file whose name is input by the user.
2. Write some programs that demonstrate reading and printing an array of floats that are in a file.
3. There are many other system calls available such as getting the time (\#13) or making a directory ($m k d i r=\# 39$). Look up such calls and note how the parameters usually follow those of the associated C code.
4. Try some file manipulations that use lseek that has system call number \#19.
5. In the create.s program, test to see what happens if the file already exists. How many characters are actually written into the file?

17 Local data

Most of our examples involving data stored in memory (in contrast to data stored in registers) have used global variables. Global variables are global names, i.e., addresses of the memory that we use through labels. These addresses, somehow, pre-exist before the program runs. This is because we define them when defining the program itself.

Sometimes, though, we may want data stored in memory the existence of which is not tied to the program existence but to the dynamic activation of a function. You may recall from previous chapters, that the stack allows us to store data the lifetime of which is the same as the dynamic activation of a function. This is where we will store local variables, which in contrast to global variables, only exist because the function they belong has been dynamically activated (i.e. called/invoked).

In Chapter 15 we passed a very big array through the stack in order to pass the array by value. This will lead us to the conclusion that, somehow, parameters act as local data, in particular when they are passed through the stack.

17.1 The frame pointer

In the ARM processor, we have plenty of general-purpose registers (up to 16, albeit some of them with very narrow semantics, so actually about 12 are actually usable as general-purpose) and the AAPCS forces us to use registers for the first four parameters (r0 to r3). Note how this is consistent with the fact that these four registers are callersaved while all other registers are callee-saved. Other architectures, like the 386, have a lower number of general purpose registers (about 6) and the usual approach when passing data to functions always involves the stack. This is so because with such a small number of registers, passing parameters through registers, would force the caller to save them, usually in the stack or some other memory, which in turn will usually require at least another register for indexing! By using the stack a few more registers are easily available.

Up to this point one might wonder why we don't always pass everything through the stack and forget about registers r0 to r3. Well, passing through registers is going to be faster as we do not have to mess with loads and stores from or to the memory which is much slower than register accesses. In addition, most functions receive just a few
parameters, or at least not many more than four, so it makes sense to exploit this feature.

But then a problem arises, what if we are passing parameters through the stack and at the same time we have local variables. Both entities will be stored in the stack. How can we deal with the two sources of data which happen to be stored in the same memory area?

Here is where the concept of frame pointer appears. A frame pointer is a sort of marker in the stack that we will use to tell apart local variables from parameters. We must emphasize the fact that a frame register is almost always unnecessary and one can always devise ways to avoid it. That said, a frame pointer gives us a consistent solution to accessing local data and parameters in the stack. Of course, most good things come with a price, and the frame pointer is not an exception: we need to use a register for it. Sometimes this restriction may be unacceptable so we can, almost always, get rid of the frame pointer.

Due to its optional nature, the frame pointer is not specified nor mandated by the AAPCS. That said, the usual approach is using register r11. As an extension (apparently undocumented, as far as we have been able to tell) we can use the name fp which is far more informative than just r11. Nothing enforces this choice, we can use any other register as frame pointer. Since we will use $f p$ (i.e., r11) we will have to refrain from using r11 for any other purpose.

17.2 Dynamic link of the activation record

Activation record is a fancy name to specify the context of a called function. That is, the local data and parameters (if passed through the stack) of that function. When a function is written using a frame pointer some bookkeeping is required to correctly maintain the activation record.

First let's examine the typical structure of a function.

```
function:
    push {r4, lr} /* Keep the callee saved registers */
    ... /* code of the function */
    pop {r4, lr} /* Restore the callee saved registers */
    bx lr /* Return from the function */
```

Now let's modify the function to use a frame pointer (in the code snippet below do not mind the r5 register that only appears here to keep the stack 8-byte aligned).

```
function:
    push {r4, r5, fp, lr} /* Keep the callee saved registers.
        We added r5 to keep the stack 8-byte aligned
```

```
    but the important thing here is fp */
mov fp, sp /* fp <- sp. Keep dynamic link in fp */
... /* code of the function */
mov sp, fp /* sp <- fp. Restore dynamic link in fp */
pop {r4, r5, fp, lr} /* Restore the callee saved registers.
    This will restore fp as well */
bx lr /* Return from the function */
```

Focus on the mov instructions just before and after the function code. We first keep the address of the top of the stack in fp. After the function call we restore the value of the stack using the value kept in fp. Now you should see why we said that the frame pointer is usually unnecessary: if the sp register does not change between those moves, having a frame pointer will be pointless, why should we restore a register that didn't change?

Let's assume for now that the frame pointer is going to be useful. What we did in the first mov instruction was setting the dynamic link. The stack and registers will look like this after we have set it.

Figure 17-1

As you can see, the fp register will point to the top of the stack. But note that in the stack we have the value of the old $f p$ (the value of the $f p$ in the function that called us). If we assume that our caller also uses a frame pointer, then the fp we kept in the stack of the callee points to the top of the stack when our caller was called.

But still this looks useless because both registers fp and sp in the current function point to the same position in the stack.

Let's proceed with the example and be sure to check the sub command where we enlarge the stack.

```
function:
    /* Keep callee-saved registers */
    push {r4, r5, fp, lr} /* Keep the callee saved registers.
                                    We added r5 to keep the stack 8-byte aligned
                                    but the important thing here is fp */
    mov fp, sp /* fp <- sp. Keep dynamic link in fp */
    sub sp, sp, #8 /* Enlarge the stack by 8 bytes */
    ... /* code of the function */
    mov sp, fp /* sp <- fp. Restore the dynamic link in fp */
    pop {r4, r5, fp, lr} /* Restore the callee saved registers.
        This will restore fp as well */
    bx lr /* Return from the function */
```

Now, after enlarging the stack, the stack and registers will look like this.

Figure 17-2

Can you see the range of data from sp to $f p$? This is the local data of our function. We will keep local variables of a function in this space when using a frame pointer. We simply have to allocate stack space by decreasing the value of sp (and ensuring it is 8 -byte aligned per AAPCS requirements).

Now consider the instruction mov $s p$, fp near the end of the function. What it does is leaving the state of the registers just like before we enlarged the stack (before the sub $\mathrm{sp}, \mathrm{sp}, \# 8)$. And voilá, we have freed all the area of the stack that our function was using. A bonus of this approach is that it does not require keeping anywhere the number of bytes we reserved on the stack. Neat, isn't it?

17.3 What about parameters passed in the stack?

A player is still missing in our frame pointer approach: parameters passed through the stack. Let's assume that our function may receive parameters in the stack and we have enlarged the stack by subtracting from sp . The whole picture looks like this.

Figure 17-3

Notice that we lied a bit in the two first figures. In them, the old fp pointer kept in the stack pointed to the top of the stack of the caller. Not exactly, it will point to the base of the local data of the caller, exactly like what happens with the fp register in the current function.

17.4 Indexing through the frame pointer

When we are using a frame pointer a nice property (that maybe you have already deduced from the figures above) holds: local data is always at lower addresses than the address pointed by fp while parameters passed in the stack (if any) will always be at higher addresses than the one pointed by $f p$. It must be possible to access both kinds of local data through fp .

In the following example we will use a function that receives an integer by reference (i.e., an address to an integer) and then squares that integer. In C that is:

```
void sq(int *c)
{
    (*c) = (*C) * (*\textrm{c});
}
```

You may be wondering why the function sq has a reference parameter (should it not be easier to return a value?), but bear with us for now. We can (should?) implement sq without using a frame pointer due to its simplicity.

```
sq:
    ldr r2, [r0] @ r2 <- (*r0)
    ldr r3, [r0] @ r3 <- (*r0)
    mul r1, r2, r3 @ r1 <- r2 * r3
    str r1, [r0] @ (*r0) <- r1
    bx lr @ Return from the function
```

Now consider the following function that returns the sum of the squares of its five parameters. It uses the function sq defined above.

```
int sq_sum5(int a, int b, int c, int d, int e)
{
    sq(&a);
    sq(&b);
    sq(&c);
    sq(&d);
    sq(&e);
    return a + b + c + d + e;
}
```

Parameters a, b, c and d will be passed through registers r0, r1, r2, and r3 respectively. The parameter e will be passed through the stack. The function sq, though, expects a reference, i.e., an address, to an integer and registers do not have an address. This means we will have to allocate temporary local storage for these registers. At least one integer will have to be allocated in the stack in order to be able to call sq but for simplicity we will allocate four of them.

This time we will use a frame pointer to access both the local storage and the parameter e.

```
sq_sum5:
    push {fp, lr} /* Keep fp and all callee-saved registers. */
    mov fp, sp /* Set the dynamic link */
    sub sp, sp, #16 /* Allocate space for 4 integers in the stack */
    /* Keep parameters in the stack */
    str r0, [fp, #-16] @ *(fp - 16) <- r0
    str r1, [fp, #-12] @ *(fp - 12) <- r1
    str r2, [fp, #-8] @ *(fp - 8) <- r2
    str r3, [fp, #-4] @ *(fp - 4) <- r3
```

```
/* At this point the stack looks like this
    | Value | Address(es)
    +--------+------------------------
    | r0 | [fp,#-16], [sp]
    | r1 | [fp, #-12], [sp, #4]
    r2 | [fp, #-8], [sp, #8]
    r3 | [fp, #-4], [sp, #12]
    | fp | [fp], [sp, #16]
    | lr | [fp, #4], [sp, #20]
    | e | [fp, #8], [sp, #24]
    v
    Higher
    addresses
*/
sub r0, fp, #16 @ r0 <- fp - 16
bl sq @ call sq(&a);
sub r0, fp, #12 @ r0 <- fp - 12
bl sq @ call sq(&b);
sub r0, fp, #8 @ r0 <- fp - 8
bl sq @ call sq(&c);
sub r0, fp, #4 @ r0 <- fp - 4
bl sq @ call sq(&d)
add r0, fp, #8 @ r0 <- fp + 8
bl sq @ call sq(&e)
ldr r0, [fp, #-16] @ r0 <- *(fp - 16). Loads a into r0
ldr r1, [fp, #-12] @ r1 <- *(fp - 12). Loads b into r1
add r0, r0, r1 @ r0 <- r0 + r1
ldr r1, [fp, #-8] @ r1 <- *(fp - 8). Loads c into r1
add r0, r0, r1 @ r0 <- r0 + r1
ldr r1, [fp, #-4] @ r1 <- *(fp - 4). Loads d into r1
add r0, r0, r1 @ r0 <- r0 + r1
ldr r1, [fp, #8] @ r1 <- *(fp + 8). Loads e into r1
add r0, r0, r1 @ r0 <- r0 + r1
mov sp, fp /* Undo the dynamic link */
pop {fp, lr} /* Restore fp and callee-saved registers */
bx lr /* Return from the function */
```

As you can see, we first store all parameters (but e) in the local storage. That means that we need to enlarge the stack enough, as usual, by subtracting from sp. Once we have the storage then we can do the actual store by using the fp register. Note the
usage of negative offsets, because local data will always be in lower addresses than the address in fp . As mentioned above, the parameter e does not have to be stored because it is already in the stack, at a positive offset from fp (i.e., at a higher address than the address in $f p$).

Note that, in this example, the frame pointer is not indispensable as we could have used sp to access all the required data (see the representation of the stack).

In order to call sq we have to pass the addresses of the several integers, so we compute the address by subtracting from $f p$ the proper offset and storing it in r0, which will be used for passing the first (and only) parameter of sq. See how, to pass the address of e, we just compute an address with a positive offset. Finally we add the values by loading them again in r0 and r1 and using r0 to accumulate the sums.

An example program that calls sq_sum5(1, 2, 3, 4, 5) looks like this.

```
/* squares.s */
.data
message: .asciz "\n Sum of 1^2 + 2^2 + 3^2 + 4^2 + 5^2 is %d\n"
.text
sq:
    <<defined above>>
sq_sum5:
    <<defined above>>
.globl main
main:
    push {r4, lr} /* Keep callee-saved registers */
    /* Prepare the call to sq_sum5 */
    mov r0, #1 @ Parameter a <- 1
    mov r1, #2 @ Parameter b <- 2
    mov r2, #3 @ Parameter c <- 3
    mov r3, #4 @ Parameter d <- 4
    /* Parameter e goes through the stack,
            so it requires enlarging the stack */
        mov r4, #5 @ r4 <- 5
        sub sp, sp, #8 /* Enlarge the stack 8 bytes, we will use
                                only the topmost 4 bytes */
```

```
str r4, [sp] @ Parameter e <- 5
bl sq_sum5 @ call sq_sum5(1, 2, 3, 4, 5)
add sp, sp, #8 @ Shrink back the stack
/* Prepare the call to printf */
mov r1, r0 @ The result of sq_sum5
ldr r0, =message
bl printf @ Call printf
pop {r4, lr} /* Restore callee-saved registers */
bx lr
\$ ./squares
Sum of \(1^{\wedge} 2+2^{\wedge} 2+3^{\wedge} 2+4^{\wedge} 2+5^{\wedge} 2\) is 55
```


Projects

1. Rewrite some earlier programs to pass the parameters by reference.
2. Rewrite some earlier programs to reference variables using the frame pointer, even if it is not necessary.

18 Inline Assembler in C Code

Abstract

Although we have concentrated on Assembler programming, we must admit that almost every microprocessor system comes with an excellent C compiler and it is expected that programmers will write in C. Sometimes, however, it is necessary to optimize the code by manually inserting assembler code into the C source code. Based on the GNU C compiler, most manufacturers allow for inline assembler code. Unfortunately, each company does it slightly differently so one must learn the details of each system that one uses.

18.1 The asm Statement

The format of the new asm statement is as follows:

```
asm("<list of assembler instructions>"
    : <list of write-only parameter formats and names>
    : <list of read-only parameter formats and names>
    : <list of registers that are changed (clobbered) by the code>
    );
```

The details of using this instruction are many and complicated. Some requirements are unfortunate but depended on the whim of the compiler writer.

If there are no registers that are modified, the third colon ":" is not necessary. If there are no write-only parameters but some read-only ones, they must be preceded by two colons. The following is an example where there are no parameters at all:

```
int return1(void) {asm("mov r0, #1");}
```

This trivial function returns the integer value 1 in the usual register r0. No colons are necessary. It is not necessary to inform the compiler that r0 is being changed.

Another simple example is the following complete C program that initializes two global variables " i " and " j " and takes no parameters and returns nothing. The output should be " $\mathrm{i}=100$ and $\mathrm{j}=200$ " after running the program.
int i, j;

```
void Initialization(void)
{
asm("mov r0,#0; add %0,r0,#100; add %1,r0,#200":"+r"(i),"+r" (j));
}
```

void main(void)
\{
Initalization();
printf("\n i = \%d and j = \%d $\backslash n ", ~ i ~, ~ j) ; ~$
\}

Since there is just one colon before the parameter formats and names, they are writeonly. Because of the ordering of the list, variable " i " is referenced by " $\% 0$ " and variable " j " by " $\% 1$ ". This count may be continued for additional parameters. [This is an older method that still works. A more recent way to refer to names is given below.] The formats are both " +r " (the strings themselves) in this case (the " +r " means it is readwrite). The choices include " $=\mathrm{r}$ " for a write-only parameter with an integer register associated with it, and " $=\mathrm{f}$ " for a write-only parameter with a floating point register associated. By the way, they may be either global or local variables in general. We also note that the number of colons and the prefix " $=$ " are redundant but that's how to do it.

The style of programming we will use here will be to write the I/O portion of the program in C and do most of the actual processing in called functions written in assembler. This follows the HIPO (Hierarchical Input Process Output) model nicely.

18.2 Simple Example

We have said that multiplication is much slower than such operations as addition or shifting. If we wish to multiply a number by three, we might improve our performance by using the trick shown earlier.

```
#include <stdio.h>
int triple(int n)
{
    asm("add %[value], %[value], %[value], LSL #1" : [value] "+r" (n));
}
int main(void)
{
    int n;
    printf("\nTriple Program!\n");
    printf("\nEnter an integer: ");
```

```
    scanf(%d, &n);
    printf("\nThree times %d is %d", n, triple(n));
}
```

In this code section we refer to the operands by the percent sign (\%) followed by a symbolic name in square brackets. These names are independent of names used elsewhere in the program.

Of course a very intelligent C compiler might optimize the code for us but this is supposed to be a trivial example. The general idea is that in many large programs, only a very small amount of the code takes up most of the processing time. Optimizing that part can give big savings.

We will not go into great detail concerning inline code since good C compilers are available and good references, such as those given in the Projects, are also available.

Projects

1. Rewrite some earlier programs using some inline assembler code.
2. Look up more detailed information concerning inline assembler using the GCC compiler at locations such as:
a) https://www.fdi.ucm.es/profesor/mendias/PSyD/docs/ARM GCC Inline Assembler Cookbook.pdf
b) http://www.ethernut.de/en/documents/arm-inline-asm.html.

19 Thumb

Several times in previous chapters we have talked about ARM as an architecture that has several features aimed at embedded systems. In such systems memory is scarce and expensive, so designs that help reduce the memory footprint are very welcome. Here we will see another of these features: the Thumb instruction set.

19.1 The Thumb instruction set

In earlier chapters we have been working with the ARMv6 instruction set (the one implemented in the Raspberry Pi). In this instruction set, all instructions are 32 -bits wide, so every instruction takes 4 bytes. This is a common design since the arrival of RISC processors. That said, in some scenarios such codification is overkill in terms of memory consumption: many platforms are very simple and rarely need all the features provided by the instruction set. If only they could use a subset of the original instruction set that can be encoded in a smaller number of bits!

So, that is what the Thumb instruction set is all about. It is a reencoded subset of the ARM instructions that takes only 16 bits per instruction. That means that we will have to do away with some instructions. As a benefit our code density is higher: most of the time we will be able to encode the code of our programs in half the space.

19.2 Support of Thumb in Raspbian

While the processor of the Raspberry Pi properly supports Thumb, there is still some software support that unfortunately is not provided by Raspbian. That means that we will be able to write some snippets in Thumb but in general this is not supported (if you try to use Thumb for a full C program you will end with a sorry, unimplemented message by the compiler).

19.3 Instructions

Thumb provides about 45 instructions (of about 115 in ARMv6). The narrower codification of 16 bits means that we will be more limited in what we can do in our code.

Registers are split into two sets: low registers, r0 to r7, and high registers, r7 to r15. Most instructions can only fully work with low registers and some others have limited behaviour when working with high registers.

Also, Thumb instructions cannot be predicated. Recall that almost every ARM instruction can be made conditional depending on the flags in the cpsr register. That is not the case in Thumb where only the branch instruction is conditional.

Mixing ARM and Thumb is only possible at the function level: a function must be wholly ARM or Thumb, it cannot be a mix of the two instruction sets. Recall that our Raspbian system does not totally support Thumb so at some point we will have to jump from ARM code to Thumb code. This is done using the instruction (available in both instruction sets) blx. This instruction behaves like the bl instruction we use for function calls but changes the state of the processor from ARM to Thumb (or Thumb to ARM).

We also have to tell the assembler that some portion of assembler is actually Thumb while the other is ARM. Since by default the assembler expects ARM, we will have to change to Thumb at some point.

19.4 From ARM to Thumb

Let's start with a very simple program returning an error code of 2 set in Thumb.

```
/* thumb-first.s */
.text
.code 16 /* Here we say we will use Thumb */
.align 2 /* Make sure instructions are aligned at 2-byte boundary */
thumb_function:
    mov r0, #2 /* r0 <- 2 */
    bx lr /* return */
.code 32 /* Here we say we will use ARM */
.align 4 /* Make sure instructions are aligned at 4-byte boundary */
.globl main
main:
    push {r4, lr}
    blx thumb_function /* From ARM to Thumb we use blx */
    pop {r4, lr}
    bx lr
```

Thumb instructions in our thumb_function actually resemble ARM instructions. In fact
most of the time there will not be much difference. As stated above, Thumb instructions are more limited in features than their ARM counterparts.

If we run the program, it does what we expect.

```
$ ./thumb-first; echo $?
2
```

How can we tell our program actually mixes ARM and Thumb? We can use objdump -d to dump the instructions of our thumb-first.o file.

```
$ objdump -d thumb-first.o
thumb-first.o: file format elf32-littlearm
Disassembly of section .text:
00000000 <thumb_function>:
    0: 2002 movs r0, #2
    2: 4770 bx lr
    4: e1a00000 nop ; (mov r0, r0)
    8: e1a00000 nop ; (mov r0, r0)
    c: e1a00000 nop ; (mov r0, r0)
00000010 <main>:
    10: e92d4010 push {r4, lr}
    14: fafffff9 blx 0 <thumb_function>
    18: e8bd4010 pop {r4, lr}
    1c: e12fff1e bx lr
```

Check thumb_function: its two instructions are encoded in just two bytes (instruction bx lr is at offset 2 from mov r0, \#2). Compare this to the instructions in main: each one is at offset 4 from its predecessor instruction. Note that some padding was added by the assembler at the end of the thumb_function in form of nops (that should not be executed, anyway).

19.5 Calling functions in Thumb

In Thumb we want to follow the AAPCS convention like we do when in ARM mode, but then some oddities happen. Consider the following snippet where thumb_function_1 calls thumb_function_2.

```
.code 16 /* Here we say we will use Thumb */
.align 2 /* Make sure instructions are aligned at 2-byte boundary */
thumb_function_2:
```

/* Do something here */
bx lr
thumb_function_1:
push $\{r 4, \operatorname{lr}\}$
bl thumb_function_2
pop \{r4, lr\} /* ERROR: cannot use lr in pop in Thumb mode */
bx lr

Unfortunately, this will be rejected by the assembler. If you recall from Chapter 11, in ARM push and pop are mnemonics for stmdb sp! and ldmia sp!, respectively. But in Thumb mode push and pop are instructions on their own and so they are more limited: push can only use low registers and $1 r$, while pop can only use low registers and pc. The behaviour of these two instructions are almost the same as the ARM mnemonics. So, you are now probably wondering why these two special cases for 1 lr and pc . This is the trick: in Thumb mode pop $\{p c\}$ is equivalent to pop the value val from the stack and then do bx val. So the two instruction sequence: $\operatorname{pop}\{r 4, \operatorname{lr}\}$ followed by bx lr becomes simply pop $\{\mathrm{r} 4, \mathrm{pc}\}$.

So, our code will look like this.

```
/* thumb-call.s */
.text
.code 16 /* Here we say we will use Thumb */
.align 2 /* Make sure instructions are aligned at 2-byte boundary */
thumb_function_2:
    mov r0, #2
    bx lr /* A leaf Thumb function (i.e., a function that does
            not call any other function so it did not have to
keep lr in the stack) returns using "bx lr" */
thumb_function_1:
    push {r4, lr}
    bl thumb_function_2 /* From Thumb to Thumb we use bl */
    pop {r4, pc} /* How we return from a non-leaf Thumb function */
.code 32 /* Here we say we will use ARM */
.align 4 /* Make sure instructions are aligned at 4-byte boundary */
.globl main
main:
    push {r4, lr}
    blx thumb_function_1 /* From ARM to Thumb we use blx */
```

pop $\{r 4,1 r\}$
bx lr

19.6 From Thumb to ARM

Finally we may want to call an ARM function from Thumb. As long as we stick to AAPCS everything should work correctly. The Thumb instruction to call an ARM function is again blx. Following is an example of a small program that says "Hello world" four times calling printf, a function in the C library that in Raspbian is of course implemented using ARM instructions.

```
/* thumb-first.s */
.data
message: .asciz "Hello world %d\n"
.text
.code 16 /* Here we say we will use Thumb */
.align 2 /* Make sure instructions are aligned at 2-byte boundary */
thumb_function:
    push {r4, lr} /* keep r4 and lr in the stack */
    mov r4, #0 /* r4 <- 0 */
    b check_loop /* unconditional branch to check_loop */
    loop:
        /* prepare the call to printf */
        ldr r0, =message /* r0 <- &message */
        mov r1, r4 /* r1 <- r4 */
        blx printf /* From Thumb to ARM we use blx.
                                    printf is a function in the C library that is
                                    implemented using ARM instructions */
        add r4, r4, #1 /* r4 <- r4 + 1 */
    check_loop:
        cmp r4, #4 /* compute r4 - 4 and update the cpsr */
        blt loop /* if r4 < 4 then branch to loop */
    pop {r4, pc} /* restore registers & return from Thumb function */
.code 32 /* Here we say we will use ARM */
.align 4 /* Make sure instructions are aligned at 4-byte boundary */
.globl main
main:
    push {r4, lr} /* keep r4 and lr in the stack */
```

```
blx thumb_function /* from ARM to Thumb we use blx */
pop {r4, lr} /* restore registers */
bx lr /* return */
```


19.7 To know more

You may want to check the Thumb 16-bit Instruction Set Quick Reference Card provided by ARM:
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf
When checking that card, be aware that the processor of the Raspberry Pi only implements ARMv6T, not ARMv6T2.

Finally, even more information is available from ARM in its "ARM Architecture Reference Manual" (copies are available at many sites on-line).

Projects

1. Rewrite some earlier programs using Thumb code.
2. Look up more detailed information concerning Thumb code using the GCC compiler.

20 Additional Topics

If the reader has covered most of the preceding chapters, he or she should be prepared to practice another important ability: to be able to read and understand the manuals concerning the hardware and software they wish to use. For our purposes, the "ARM Architecture Reference Manual" (often called the "ARM ARM") mentioned in the last chapter is important. It may be down-loaded from the web but, since it is 642 pages, probably not printed out.

20.1 ARM Instruction Set

In Part A we find described the CPU Architecture. More information is given for many of the topics we have already covered. In Chapter A3, however, is detailed material on the ARM Instruction Set. This subject is very important for engineers interested in the hardware of a computer.

ARM Instruction Set

Although some explanations of the letters that appear in the table are needed, this gives
us an idea of the complexity of designing the instruction set of a computer. Details of the actual instruction encoding appears in the rest of that chapter of the "ARM ARM". Since the chapter is 42 pages long, we will let the reader use the manual to gain information about those details. Note that Chapter A4 gives a total of 290 pages of details for each of the instructions!

20.2 Interrupt Handling

Another critical topic concerning computer architecture is how the system handles Interrupts, also called Exceptions. Programmers should be aware that the operating system is being interrupted constantly by (at least) the system clock. In addition, every peripheral device must check in with the operating system regularly. Finally, as we saw previously, the operating system must handle our SerVice Calls (svc) or, equivalently, SoftWare Interrupts (swi).

We have mentioned the Current Program Status Register (cpsr) before. Its format, from A2-11 of the "ARM ARM" is:

and the meanings of the fields are described there.
The four bits 31-28 are those associated with the condition codes we have used before. Bits 4-0 give the mode of operation.

Processor mode	Mode number	Description	
User	usr	$0 b 10000$	Normal program execution mode
FlQ	fiq	0b10001	Supports a high-speed data transfer or channel process
IRQ	irq	$0 b 10010$	Used for general-purpose interrupt handling
Supervisor	svc	0b10011	A protected mode for the operating system
Abort	abt	0b10111	Implements virtual memory and/or memory protection
Undefined	und	0b11011	Supports software emulation of hardware coprocessors
System	sys	0b11111	Runs privileged operating system tasks (ARMv4 and above)

Mode bits

There are seven modes in which the system may be running as shown above. All the modes other than User are privileged; that is, they are able to use all the system's resources. In order to handle exceptions quickly, the processor has more registers than we have admitted before. In particular, each of the first five privileged modes (that is, not including the System mode) has a separate spsr (Saved Program Status Register) in which the cpsr of the process that was running when the exception arose is stored. In addition they also have their own r13 and r14 registers so that they will not corrupt
those of the user's process while they run. In addition, in order to make the Fast Interrupt not have to save registers, that mode has its own r8 through r12 registers. See Figure A2-1 Register organization from the "ARM ARM":

Modes						
			-Privil	modes ception mo		
User	System	Supervisor	Abort	Undefined	Interrupt	Fast interrupt
Ro	R0	mo	A0	Ro	Ro	po
A1	R1	R1	A1	R1	R1	R1
R2	R2	PR	P2	R2	R2	P2
R3	R3	R3	P3	R3	R3	R3
R4	R4	P4	P4	H4	R4	P4
R5	RS	RS	R 5	R5	R5	PS
H6	R6	P6	A6	R6	R6	P6
R7	R7	H7	R7	R7	R7	R7
R8	R8	P8	P88	R8	R8	R8_系
R9	R9	R9	R9	R9	R9	
R10	R10	R10	R10	R10	R10	R10.fq
R11	R11	R11	R11	R11	R11	${ }^{\text {P11_fq }}$
R12	R12	R12	R12	A12	R12	${ }^{\text {R12.fq }}$
R13	R13	R13_sme	13_abt	P13 und	A13. im	P13.fq
R14	R14	R14_300	114_abt	R14.und	R14 im	R14_fq
PC						

CPSR	CPSA	CPSR	CPSR	CPSR	CPSR	CPSR
	SPSR_sve	SPSR_abt	SPSA_und	SPSR_rq	SPSR_fq	

Register Organization

Clearly, the designers of the ARM processor gave great attention to the problem of how to handle interrupts quickly.

20.3 To know more

Read the entire "ARM ARM"! Of course that's more than one wants to know about the processor but scanning the manual to see what's available is reasonable.

For advanced information about such topics as pipelining and cache handling, see the text by Patterson and Hennessy, Computer Organization and Design, (ARM Edition), Morgan Kaufmann (Elsevier), 2017.

Projects

1. If you have taken an Operating Systems course, consider how the ARM allows for uninterruptible operations leading to having semaphores.
2. Additional Topics
3. Look up more detailed information concerning Java code using the Jazelle state of the processor.

A ASCII Standard Character Set

Char	Ctri	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex
NUL	^@	0	00	space	32	20	@	64	40	-	96	60
SOH	\wedge	1	01	1	33	21	A	65	41	a	97	61
STX	${ }^{\wedge} \mathrm{B}$	2	02	"	34	22	B	66	42	b	98	62
ETX	${ }^{\wedge} \mathrm{C}$	3	03	\#	35	23	C	67	43	c	99	63
EOT	${ }^{\wedge} \mathrm{D}$	4	04	\$	36	24	D	68	44	d	100	64
ENQ	${ }^{\wedge} \mathrm{E}$	5	05	\%	37	25	E	69	45	e	101	65
ACK	\wedge^{\wedge}	6	06	\&	38	26	F	70	46	f	102	66
BEL	${ }^{\wedge} \mathrm{G}$	7	07		39	27	G	71	47	g	103	67
BS	${ }^{\wedge} \mathrm{H}$	8	08	(40	28	H	72	48	h	104	68
HT	\wedge	9	09)	41	29	I	73	49	i	105	69
LF	\wedge	10	0A	*	42	2 A	J	74	4A	j	106	6A
VT	${ }^{\wedge} \mathrm{K}$	11	0B	+	43	2B	K	75	4B	k	107	6B
FF	${ }^{\wedge} \mathrm{L}$	12	0 C	,	44	2 C	L	76	4C	1	108	6C
CR	${ }^{\wedge} \mathrm{M}$	13	0D	-	45	2D	M	77	4D	m	109	6D
SO	${ }^{\wedge} \mathrm{N}$	14	OE	.	46	2E	N	78	4E	n	110	6 E
SI	${ }^{\wedge} \mathrm{O}$	15	OF	1	47	2F	O	79	4F	o	111	6 F
DLE	${ }^{\wedge}$	16	10	0	48	30	P	80	50	p	112	70
DC1	${ }^{\wedge} \mathrm{Q}$	17	11	1	49	31	Q	81	51	q	113	71
DC2	${ }^{\wedge} \mathrm{R}$	18	12	2	50	32	R	82	52	r	114	72
DC3	\wedge S	19	13	3	51	33	S	83	53	s	115	73
DC4	${ }^{\wedge} \mathrm{T}$	20	14	4	52	34	T	84	54	t	116	74
NAK	\wedge	21	15	5	53	35	U	85	55	u	117	75
SYN	\wedge	22	16	6	54	36	V	86	56	v	118	76
ETB	${ }^{\wedge} \mathrm{W}$	23	17	7	55	37	W	87	57	w	119	77
CAN	\wedge	24	18	8	56	38	X	88	58	x	120	78
EM	${ }^{\wedge} \mathrm{Y}$	25	19	9	57	39	Y	89	59	y	121	79
SUB	${ }^{\wedge} \mathrm{Z}$	26	1A	:	58	3A	Z	90	5A	z	122	7A
ESC	\wedge	27	1B	;	59	3B	[91	5B	(123	7B
FS	\wedge	28	1 C	<	60	3C	1	92	SC	1	124	7C
GS	$\left.{ }^{\wedge}\right]$	29	1D	$=$	61	3D	1	93	5D	\}	125	7D
RS	m	30	1 E	>	62	3 E	\wedge	94	5 E	\sim	126	7E
US	^_	31	IF	?	63	3F	-	95	5 F	delete		7F

Abbreviations for Control Characters

NUL1	BackSpace	Data Link Escape	CANcel
Start Of Heading	Horizontal Tab	Device Control 1	End of Medium
Start of TeXt	Line Feed	Device Control 2	SUBstitute
End of TeXt	Vertical Tab	Device Control 3	ESCape
End Of Transmission Form Feed	Device Control 4	File Separator	
ENQuiry	Carriage Return	Negative AcKnowledge	Group Separator
ACKnowledge	Shift Out	SYNchronous idle	Record Separator
BEL1	Shift In	End Transmission Block	Unit Separator

B Integers

For scientists and engineers, computers are used to do arithmetic computations. In this chapter we will discuss the basics of how integer numbers are stored and manipulated. Later we will see that real numbers are stored quite differently.

B. 1 Unsigned Integers

We may give an interpretation of bit patterns in an eight-bit byte as the integers from $0 \mathrm{x} 00=0_{D E C}$ to $0 \mathrm{xFF}=255_{D E C}=2^{8}-1$. The ARM processor that we study in Chapter One has registers in which one can store integers that are 32 bits in size so we will usually work with these longer groupings. It is easy to see that these four byte (32 bit) configurations may be taken to represent all the unsigned integers from $0_{D E C}=$ $0 x 00000000$ to $2^{32}-1=4,294,967,295_{D E C}=0 x F F F F F F F F$.

Of course we do not want to be limited to non-negative integers so the interesting question is how to represent negative numbers using some of the 2^{32} patterns available. In the next sections we will look at two simple ways that are rarely used and then the actual standard system (2's complement). Still another system will be treated in Chapter 13 since it is part of the standard method used for representing real numbers (IEEE-754).

B. 2 Signed-Magnitude Integers

Before considering one of the many ways to represent integers so as to allow for both positive and negative numbers we will agree on a numbering scheme for the bits. It does not matter which decision we make in terminology but it may be convenient to use zero for the least significant bit. Thus in a 32-bit register we will call the right most or least significant "bit 0" and count towards the left up to "bit 31" for the most significant. One advantage is that for the unsigned integers described above the $n^{\text {th }}$ bit is associated with the power 2^{n}.
|31|30292827262524232221201918171615141312111009080706050403020100|

In order to allow for signed numbers we may choose to use bit 31 to indicate the sign of the number and the other 31 bits to give its magnitude. This system is called the signed-magnitude association. It is convenient and traditional to use bit 31 equaling zero to indicate positive numbers and one to indicate negative numbers. Thus,

$$
\begin{gathered}
0 x 00000000=+0_{D E C}, \\
0 x 00000001=+1_{D E C}, \\
\cdots,
\end{gathered}
$$

while

$$
\begin{gathered}
0 x 80000000=-0_{D E C}, \\
0 x 80000001=-1_{D E C}, \\
\cdots \\
0 x \text { FFFFFFFF }=-2,147,483,647_{D E C}=-\left(2^{31}-1\right)
\end{gathered}
$$

Although this interpretation is simple for humans to use, the existence of both a +0 and a -0 makes it somewhat difficult for computer use. Testing whether a number is equal to zero is probably one of the most frequent operations and it might require two tests using the signed-magnitude system.

B. 3 One's Complement

Another reasonable system is to invert every bit in a number to represent its negative. This is called the 1's complement of a number. Since bit 31 would change from 0 to 1 we could keep our convention that 0 means positive and 1 means negative. For example,

$$
1111111111111111111111111111110101_{B I N}=0 x \text { FFFFFFF5 }
$$

would be the 1's complement of

$$
00000000000000000000000000001010_{B I N}=0 x 0000000 \mathrm{~A}=10_{D E C}
$$

and so would represent $-10_{D E C}$. Taking the 1's complement a second time would return the original number and so satisfies a natural requirement for consistency. However, there would still be the problem of having both a positive zero ($0 x 00000000$) and a negative zero ($0 x$ FFFFFFFF).

B. 4 Two's Complement

Finally, we reach a somewhat more complicated (for humans) system which turns out to be easy to implement in hardware and is used in almost all computers. Again bit 31 is used to indicate the sign of the number and positive numbers are associated with their magnitude. Negative numbers are obtained by taking the 1's complement and then adding one to the result (ignoring any carry into the non-existent 33 rd bit position). This defines the 2 's complement of a number.

The non-negative integers are then associated as before:

$$
\begin{gathered}
0 x 00000000=+0_{D E C}, \\
0 x 00000001=+1_{D E C}, \\
\cdots, \\
0 x 7 \mathrm{FFFFFFF}=+2,147,483,647_{D E C}=+\left(2^{31}-1\right)
\end{gathered}
$$

Now consider $0 x F F F F F F F F$. Its 1 's complement is 0 x 00000000 and so its 2 's complement is $0 x 00000001$. Hence we associate $0 x F F F F F F F F$ with $-1_{D E C}$. Next, 0xFFFFFFFE has 1 's complement of $0 x 00000001$ and so adding one yields $0 x 00000002$ thus associating it with $-2_{D E C}$. We may continue in this way down to $0 x 80000001$ with 1's complement of $0 x 7 \mathrm{FFFFFFE}$, 2 's complement of $0 x 7$ FFFFFFF which is $2^{31}-1$, and so the value assigned is $-\left(2^{31}-1\right)$. There is still the pattern $0 x 80000000$ to deal with. Its 1 's complement is $0 x 7 \mathrm{FFFFFFF}$ and so its 2's complement is itself! Since it is in the form of a negative number (bit 31 is one), we will associate it with -2^{31}, the next number in order. In summary,

$$
\begin{gathered}
0 x 80000000=-2,147,483,648_{D E C}=-2^{31} \\
0 x 80000001=-2,147,483,647_{D E C}=-\left(2^{31}-1\right)
\end{gathered}
$$

$$
\begin{aligned}
& 0 x \mathrm{FFFFFFFE}=-2_{D E C} \\
& 0 x \mathrm{FFFFFFFF}=-1_{D E C}
\end{aligned}
$$

In this system there is now only one zero: 0 x 00000000 . On the other hand, there is one negative number with no corresponding positive number. This explains why we are told in $\mathrm{C} / \mathrm{C}++/ \mathrm{J}$ ava that an int variable can take on all values between -2^{31} and $+\left(2^{31}-1\right)$ and so the range is not symmetric about zero. We should note, however, that the 2's complement of the 2's complement does return the original number as required.

B. 5 Arithmetic and Overflow

In addition to the law of double negation $(--\mathrm{x}=\mathrm{x})$, we may check that the sum of a positive and a negative integer in 2's complement form does yield the correct result (again ignoring any carry into the (non-existent) 32nd bit position). For example, the sum

$$
\begin{aligned}
& 0 x \text { FFFFFAD } 3=11111111111111111111101011010011_{B I N}=-1325_{D E C} \\
& +0 x 00001666=00000000000000000001011001100110_{\text {BIN }}=+5734_{D E C} \\
& =0 x 00001139=00000000000000000001000100111001_{\text {BIN }}=+4409_{D E C}
\end{aligned}
$$

is correct. Although addition is always correct in this case, it is important to note that adding two positive or two negative numbers may give an incorrect result.

Let us consider a simple example of the problem. Adding

$$
\begin{gathered}
0 x 7 \mathrm{FFFFFFF}=011111111111111111111111111111111_{\text {BIN }}=+\left(2^{31}-1\right) \\
+0 x 7 \mathrm{FFFFFFF}=01111111111111111111111111111111_{B I N}=+\left(2^{31}-1\right) \\
=0 x \mathrm{FFFFFFFE}=11111111111111111111111111111110_{B I N}=-2_{D E C}
\end{gathered}
$$

We see that in general adding two large positive numbers together may give a negative number (we may check that adding small numbers is correct). The same type problem can occur when adding two negative numbers together; it might produce a positive number. The cause in each case is overflow; that is, bits are carried into the sign bit incorrectly when a result should be larger than can be represented in 31 bits.

The overflow problem can occur with most high-level languages. In any problem in which large numbers can appear one should check for this condition. Depending on the language, compiler, operating system, and supporting hardware, different results may be obtained. In some cases the problem is ignored and it is completely up to the programmer to watch for errors. We will demonstrate this later. At the other extreme, in some cases the system will terminate our program, giving us no opportunity to take corrective action after it happens. An intermediate case is when an exception is signaled and our program can decide on what action to take (see try-catch statements in Java).

Another law of arithmetic we want satisfied by the 2's complement representation is that $x-y=x+(-y)$ should always be true, where $-y$ is the negative of y. In other words, we would expect to do subtraction by doing an addition. It is easy to see that the 1's complement representation would lead to a simple hardware solution since all that would be needed would be to invert each of the bits in the subtrahend. It turns out that the 2 's complement representation is equally easy to implement.

In a study of arithmetic circuits we see that an integer adder could be made from 32 adders of individual bits. Each of these would give as output both the one bit sum of the two inputs and the "carry" bit sent to the next adder. This reminds us that each bit adder actually has three inputs: the two input bits to be added together and the carry bit from the lower order adder. The 0-bit, however, has no lower order adder attached so when subtracting rather than adding one can use that input wire to complete the final step of adding one to the 1's complement.

B. 6 Bitwise Operations

In addition to arithmetic operations, almost all computers include some operations which act on the individual bits in bytes. The logical functions AND, OR, XOR and NOT used in C/C++/Java are one type of example. We will use the AND operation with a predetermined set of bits on (equal to one) to pick out the values of those certain bits from a byte or group of bytes. Thus, 0x000000FF, when used as one of the two 32-bit operands to AND, will give a result equal to exactly what is in the lowest order eight bits of the other operand. We call a pattern such as $0 x 000000 \mathrm{FF}$ a mask when used in this way.

In a similar way, we may use the OR operation to turn on certain bits. For example, the mask $0 x 80000000$ would turn on the highest order bit of the other 32 -bit operand of OR giving us a negative number no matter what the sign was originally. (Note that in 2's complement notation it would not be the negative of the original number.)

Another group of bitwise operations consists of the shift operations. Again, almost all computers have such operations. There are two types of shifts: to the right and to the left. Let us consider the right shifts first (as applied to 32-bit operands). The srl (Shift Right Logical) operation usually takes as one of its operands the count of how far each bit is shifted to the right while zeros are inserted on the left end. Bits that are shifted off the end to the right are lost (fall into the "bit bucket" is sometimes said). For example, a series of one bit right shifts of $0 x 01010101$ would give $0 x 00808080$, then $0 x 00404040$, then $0 x 00202020$, then $0 x 00101010$, then $0 x 00080808$, etc. It is an exercise to contrast these right shifts with division by two.

A problem arises if we consider the result of starting with $0 x 80808080$. Then the very first right shift would give us $0 x 40404040$. That's fine if we are only considering the bits but not if we look at the values as two's complement integers! The first is negative while the second is positive! This shift is no longer the same as division by two as mentioned above. Because of this, there is another right shift operation sra (Shift Right Arithmetic). There is no difference if the high-order bit is zero (a positive number) but when the high-order bit is one (a negative number), ones are inserted on the left instead of zeros. For example, the 0x80808080 would give 0xC0404040, then 0xE0202020, then $0 x F 0101010$, then $0 x F 8080808$, etc. It is an exercise to contrast these arithmetic right shifts with division by two.

For left shifts, there is no choice but to bring in zeros from the right and so there is no difference between sll (Shift Left Logical) and sla (Shift Left Arithmetic) and there may or may not be two different mnemonics for this operation. It is an exercise to contrast this left shift with multiplication by two. Note, however, that there may be overflow just as with actual multiplication by two! Thus $0 x 40404040$ would shift into 0x80808080 and change from positive to negative. In some machines such a change is noted in some way and can be checked for in software; in others, it is ignored.

Projects

1. Prove that the two's complement of the two's complement is the original number (Law of Double Negation).
2. Explain why the sum of any positive 2's complement integer and any negative 2's complement integer gives the correct value (no overflow).
3. Justify all the comments regarding shift operations. In particular, compare them to multiplying or dividing by two.
4. There are also "rotate" operations which shift left or right but, instead of losing the bits which go off one side, have the bits appear on the other side. They are ror (ROtate Right) and rol (ROtate Left). Justify a use for such instructions.

C Matrix Multiplication (R.F.I.)

In Chapter 14 we saw the basic elements of the VFPv2, the floating point subarchitecture of the ARMv6. In this Appendix, I (R.F.I.) will implement a floating point matrix multiply using the VFPv2.

Disclaimer: I advise you against using the code in this Appendix in commercial-grade projects unless you fully review it for both correctness and precision.

C. 1 Matrix multiply

Given two vectors \mathbf{v} and \mathbf{w} of rank r where

$$
\mathbf{v}=<v_{0}, v_{1}, \cdots, v_{r-1}>\text { and } \mathbf{w}=<w_{0}, w_{1}, \cdots, w_{r-1}>
$$

we define the dot product of \mathbf{v} by \mathbf{w} as the scalar

$$
\mathbf{v} \bullet \mathbf{w}=v_{0} \times w_{0}+v_{1} \times w_{1}+\cdots+v_{r-1} \times w_{r-1} .
$$

We can multiply a matrix A of n rows and m columns $(n \times m)$ by a matrix B of m rows and p columns $(m \times p)$. The result is a matrix of n rows and p columns $(n \times p)$. Matrix multiplication may seem complicated but actually it is not. Every element in the result matrix it is just the dot product (defined in the paragraph above) of the corresponding row of the matrix A by the corresponding column of the matrix B (that is why there must be as many columns in A as there are rows in B). (See Figure C-1 following.)

A straightforward implementation of the matrix multiplication in C is as follows.

```
float A[N][M]; // N rows of M columns each row
float B[M][P]; // M rows of P columns each row
// Result
float C[N][P]; // N rows of P columns each row
for (int i = 0; i < N; i++) // for each row of the result
{
    for (int j = 0; j < P; j++) // and for each column
    {
```

```
        C[i][j] = 0; // Initialize to zero
        // Now calculate the dot product of the row by the column
        for (int k = 0; k < M; k++)
            C[i][j] += A[i][k] * B[k][j];
    }
}
```


Figure C-1

In order to simplify the example, we will assume that both matrices A and B are square matrices of size $N \times N$. This simplifies the algorithm just a bit.

```
float A[N][N];
float B[N][N];
// Result
float C[N] [N];
```

```
for (int i = 0; i < N; i++)
```

for (int i = 0; i < N; i++)
{
{
for (int j = 0; j < N; j++)
for (int j = 0; j < N; j++)
{
{
C[i][j] = 0;
C[i][j] = 0;
for (int k = 0; k < N; k++)
for (int k = 0; k < N; k++)
C[i][j] += A[i][k] * B[k][j];
C[i][j] += A[i][k] * B[k][j];
}
}
}

```
}
```

Matrix multiplication is an important operation used in many areas. For instance, in computer graphics it is usually performed on 3×3 and 4×4 matrices representing 3D geometry. So we will try to make a reasonably fast version of it (we do not aim at getting the best one, though).

The first improvement we want to make in this algorithm is making all the loops perfectly nested. There are some technical reasons beyond the scope of this Appendix for that. So we will move the initialization of $\mathrm{C}[\mathrm{i}][\mathrm{j}]$ to 0 outside of the multiple loop.

```
float A[N][N];
float B[M][N];
// Result
float C[N] [N];
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        C[i][j] = 0;
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        for (int k = 0; k < N; k++)
            C[i][j] += A[i][k] * B[k][j];
```

After this change, the interesting part of our algorithm, the last line, is inside a perfect nest of loops of depth 3 .

C. 2 Accessing a matrix

It is relatively straightforward to access an element of an array of just one dimension, as in a [i]. To find the address of a[i], multiply i by the size in bytes of each element of the array and then add the address of a (the base address of the array). So, the address of a[i] is just a + ELEMENTSIZE * i.

Things get a bit more complicated when our array has more than one dimension, like a square or a cube. Given an access like a[i][j][k] we have to compute which element is addressed by [i] [j] [k]. This depends on whether the language is row-major order or column-major order. We assume row-major order here (as in the C language - but not FORTRAN). So [i] [j] [k] must be calculated by $k+j * N K+i * N K * N J$, where NK and NJ are the number of elements in those dimensions. For instance, a three dimensional array of $3 \times 4 \times 5$ elements, the element [1] [2] [3] is $3+2 * 5+1 * 5 * 4=23$ (here $N K=5$ and $N J=4$. Note that NI $=3$ but we do not need it at all). We assume that our language indexes arrays starting from 0 (like C). If the language allows a lower bound other than 0 , we first have to subtract the lower bound to get the position.

We can compute the position in a slightly better way if we reorder it. Instead of calculating $\mathrm{k}+\mathrm{j} * \mathrm{NK}+\mathrm{i} * \mathrm{NK} * \mathrm{NJ}$, we will do $\mathrm{k}+\mathrm{NK} *(\mathrm{j}+\mathrm{NJ} * \mathrm{i})$. That way all the arithmetic is just a repeated set of steps calculating $\mathrm{x}+\mathrm{N}_{i} * \mathrm{y}$ as in the example below.
/* Calculating the address of C[i][j][k] declared as int C[NI][NJ][NK]
with NI $=3$, $N J=4$, $N K=5$, as above: \&C[i][j][k] is, then, C + ELEMENTSIZE * ($\mathrm{k}+\mathrm{NK} *(\mathrm{j}+\mathrm{NJ} * \mathrm{i})$)
Assume i is in $r 4, j$ in $r 5, k$ in $r 6$ and the base address of C in $r 3$
*/
mov r8, \#4 @ r8 <- NJ = 4
mul r7, r8, r4 @ r7 <- NJ * i
add $r 7, r 5, r 7$ @ $r 7<-j+N J * i$
mov r8, \#5 @ r8 <- NK = 5
mul r7, r8, r7 @ r7 <- NK * (j + NJ * i)
add r7, r6, r7 @ r7 <- k + NK * (j + NJ + i)
mov r8, \#4 @ r8 <- ELEMENTSIZE (Recall ints are 4 bytes)
mul r7, r8, r7 @ r7 <- ELEMENTSIZE * (k + NK * (j + NJ * i))
add $\mathrm{r} 7, \mathrm{r} 3, \mathrm{r} 7$ @ $\mathrm{r} 7<-\mathrm{C}+$ ELEMENTSIZE $*(\mathrm{k}+\mathrm{NK} *(\mathrm{j}+\mathrm{NJ} * \mathrm{i})$)

C. 3 Naive matrix multiply of 4×4 single-precision

As a first step, let's implement a naive matrix multiply that follows the C algorithm above to the letter.

```
/* -- matmul.s */
.data
mat_A: .float 0.1, 0.2, 0.0, 0.1
    .float 0.2, 0.1, 0.3, 0.0
    .float 0.0, 0.3, 0.1, 0.5
    .float 0.0, 0.6, 0.4, 0.1
mat_B: .float 4.92, 2.54, -0.63, -1.75
    .float 3.02, -1.51, -0.87, 1.35
    .float -4.29, 2.14, 0.71, 0.71
    .float -0.95, 0.48, 2.38, -0.95
mat_C: .float 0.0, 0.0, 0.0, 0.0
            .float 0.0, 0.0, 0.0, 0.0
            .float 0.0, 0.0, 0.0, 0.0
            .float 0.0, 0.0, 0.0, 0.0
format_result:
    .ascii "Matrix result is:\n%5.2f %5.2f %5.2f %5.2f\n%5.2f %5.2f "
    .asciz "%5.2f %5.2f\n%5.2f %5.2f %5.2f %5.2f\n%5.2f %5.2f %5.2f %5.2f\n"
.text
naive_matmul_4\times4:
    /* r0 address of A
            r1 address of B
```

```
    r2 address of C
*/
push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
    /* First zero 16 single floating point */
    /* In IEEE 754, all bits cleared means 0 */
mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:
    str r6, [r4], +#4 @ *r4 <- r6 then r4 <- r4 + 4
Loop_init_test:
    subs r5, r5, #1
    bge Loop_init
/* We will use r4 as i ; r5 as j ; r6 as k */
mov r4, #0 @ r4 <- 0
Loop_i: /* loop header of i */
    cmp r4, #4 @ if r4 == 4 goto end of the loop i
    beq End_loop_i
    mov r5, #0 @ r5 <- 0
    Loop_j: /* loop header of j */
        cmp r5, #4 @ if r5 == 4 goto end of the loop j
        beq End_loop_j
        /* Compute the address of C[i][j] = C + 4*(4 * i + j) */
        mov r7, r5 @ r7 <- r5. This is r7 <- j
        adds r7, r7, r4, LSL #2 @ r7 <- r7 + (r4 << 2).
            /* This is r7 <- j + i * 4. Multiply i by the row size */
        adds r7, r2, r7, LSL #2 @ r7 <- r2 + (r7 << 2).
            /* This is r7 <- C + 4*(j + i * 4)
                                    We multiply (j + i * 4) by the size of the element.
                        A single-precision floating point takes 4 bytes.
                */
        vldr s0, [r7] / @ s0 <- *r7 = C[i][j]
        mov r6, #0 @ r6 <- 0
        Loop_k: /* loop header of k */
            cmp r6, #4 @ if r6 == 4 goto end of the loop k
            beq End_loop_k
            /* Compute the address of a[i][k] = a + 4*(4 * i + k) */
            mov r8, r6 @ r8 <- r6. This is r8<- k
            adds r8, r8, r4, LSL #2 @ r8 <- r8 + (r4<< 2) = k + i * 4
            adds r8, r0, r8, LSL #2 @ r8 <- r0 + (r8 << 2) = a+4*(k+i*4)
```


.globl main
main:
push \{r4, r5, r6, lr\} @ Keep integer registers
vpush \{d0-d1\} © Keep floating point registers
/* Prepare call to naive_matmul_4x4 */
ldr r0, =mat_A @ r0 <- \&a
ldr r1, =mat_B @ r1 <- \&b
ldr r2, =mat_C @ r2 <- \&c
bl naive_matmul_4x4
/* Now print the result matrix */
ldr r4, =mat_C @ r4 <- \&C
vldr s0, [r4] @ s0 <- *r4 = C[0][0]
vcvt.f64.f32 d1, s0 @ Convert it into a double-precision
vmov r2, r3, d1 @ \{r2,r3\} <- d1
mov r6, sp @ Remember the SP to restore it later

```
mov r5, #1 /* We will iterate from 1 to 15 (because the
    Oth item has already been handled */
add r4, r4, #60 /* Go to last item of C = C[3][3] */
Mloop:
    vldr s0, [r4] @ s0 <- *r4. Load the current item
    vcvt.f64.f32 d1, s0 @ Convert to a double-precision: d1 <- s0
    sub sp, sp, #8 @ Make room in the stack for it
    vstr d1, [sp] @ Push it on top of the stack
    sub r4, r4, #4 @ Move to the previous element in the matrix
    add r5, r5, #1 @ One more item has been handled
    cmp r5, #16 @ if r5 != 16 go to next loop iteration
    bne Mloop
ldr r0, =format_result @ r0 <- &format_result
bl printf @ call printf
mov sp, r6 @ Restore the stack after the call
mov r0, #0
vpop {d0-d1}
pop {r4, r5, r6, lr}
bx lr
```

That's a lot of code but it is not complicated. Unfortunately computing the address of the array takes an large number of instructions. In our naive_matmul_ 4×4 we have the three loops i, j and k of the C algorithm. We compute the address of C[i] [j] in the j loop (there is no need to compute it every time in the k loop). The value contained in $\mathrm{C}[\mathrm{i}][\mathrm{j}]$ is then loaded into $\mathbf{s} 0$. In each iteration of the k loop, we load $\mathrm{A}[\mathrm{i}][\mathrm{k}]$ and $\mathrm{B}[\mathrm{k}][\mathrm{j}]$ in s 1 and s 2 , respectively. After the k loop ends, we can store s 0 back to the array position (kept in r7).

In order to print the result matrix we have to pass 16 floating point numbers to printf. Unfortunately, as stated in Chapter 14, we have to first convert them into doubleprecision before passing them. Note also that the first single-precision numbers can be passed using registers r2 and r3.

All the remaining numbers must be passed on the stack and do not forget that the stack parameters must be passed in opposite order. This is why once the first element of the C matrix has been loaded into $\{\mathrm{r} 2, \mathrm{r} 3\}$ we advance 60 bytes by adding 60 to r 4 . That is C [3] [3], the last element of the matrix C. We load the single-precision value, convert it into double-precision, push it on the stack and then decrement register r4, so it points to the previous element in the matrix. Observe that we use r6 as a marker of the stack, since we need to restore the stack once printf returns. Of course we could avoid using r6 and instead do add sp, sp, \#120 since that is exactly the number of
bytes we push to the stack (15 values of double-precision, each taking 8 bytes).
I have not chosen the values of the two matrices randomly. The second one is (approximately) the inverse of the first. This way we will get the identity matrix (a matrix with all zeros but a diagonal of ones). Due to rounding issues the result matrix will not be the identity, but it will be pretty close. Let's run the program.

```
$ ./matmul
Matrix result is:
    1.00-0.00 0.00 0.00
-0.00 1.00}00.00-0.0
    0.00
    0.00-0.00 0.00 1.00
```


C. 4 Vectorial approach

The algorithm we are trying to implement is fine but it is not optimal. The problem lies in the way the k loop accesses the elements. When accessing $\mathrm{A}[\mathrm{i}][\mathrm{k}]$ it is eligible for a multiple load since $\mathrm{A}[\mathrm{i}][\mathrm{k}]$ and $\mathrm{A}[\mathrm{i}][\mathrm{k}+1]$ are contiguous elements in memory. That way we can entirely avoid the k loop and perform a 4 element load from $\mathrm{A}[\mathrm{i}][0]$ to $A[i][3]$. The access of $B[k][j]$ does not allow that since elements $B[k][j]$ and $B[k+1][j]$ have a full row between them. That would be a strided access (the stride here is a full row of 4 elements or 16 bytes). VFPv2 does not allow a strided multiple load, so we will have to load one by one. Once we have all the elements of the k loop loaded, we can do a vector multiplication and a sum.

```
naive_vectorial_matmul_4x4:
    /* rO address of A
        r1 address of B
        r2 address of C
    */
    push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
    vpush {s16-s19} /* Floating point registers starting from */
    vpush {s24-s27} /* s16 must be preserved */
        /* First zero 16 single floating point */
        /* In IEEE 754, all bits cleared means 0 */
    mov r4, r2
    mov r5, #16
    mov r6, #0
    b Loop_init_test
    Loop_init:
        str r6, [r4], +#4 @ *r4 <- r6 then r4 <- r4 + 4
    Loop_init_test:
```

```
    subs r5, r5, #1
    bge Loop_init
/* Set the LEN field of FPSCR to be 4 (value 3) */
mov r5, #0b011 @ r5 <- 3
mov r5, r5, LSL #16 @ r5 <- r5 << 16
fmrx r4, fpscr @ r4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5
fmxr fpscr, r4 @ fpscr <- r4
/* We will use
        r4 as i
        r5 as j
        r6 as k
*/
mov r4, #0 @ r4 <- 0
Loop_i: /* loop header of i */
    cmp r4, #4 © if r4 == 4 goto end of i loop
    beq End_loop_i
    mov r5, #0 @ r5 <- 0
    Loop_j: /* loop header of j */
        cmp r5, #4 @ if r5 == 4 goto end of j loop
        beq End_loop_j
        /* Compute the address of C[i][j] and load it into s0 */
        /* Address of C[i][j] is C + 4*(4 * i + j) */
        mov r7, r5 @ r7 <- r5 = j
        adds r7, r7, r4, LSL #2 @ r7 <- r7 + (r4 << 2) = j + i * 4
        adds r7, r2, r7, LSL #2 @ r7 <- r2 + (r7 << 2) = C + 4*(j+i*4)
        /* Compute the address of a[i][0] */
        mov r8, r4, LSL #2
        adds r8, r0, r8, LSL #2
        /* Load {s8,s9,s10,s11} <- {a[i][0],a[i][1],a[i][2],a[i][3]} */
        vldmia r8, {s8-s11}
        /* Compute the address of b [0][j] */
        mov r8, r5 @ r8 <- r5 = j
        adds r8, r1, r8, LSL #2 @ r8 <- r1 + (r8 << 2) = b + 4*(j)
        vldr s16, [r8] @ s16 <- *r8 = b[0][j]
        vldr s17, [r8, #16] @ s17 <- *(r8 + 16) = b[1][j]
        vldr s18, [r8, #32] @ s18 <- *(r8 + 32) = b[2][j]
        vldr s19, [r8, #48] @ s19 <- *(r8 + 48) = b[3][j]
        /* {s24,s25,s26,s27} <- {s8,s9,s10,s11} * {s16,s17,s18,s19} */
        vmul.f32 s24, s8, s16
```

```
    vmov.f32 s0, s24 @ s0 <- s24
    vadd.f32 s0, s0, s25 @ s0 <- s0 + s25
    vadd.f32 s0, s0, s26 @ s0 <- s0 + s26
    vadd.f32 s0, s0, s27 @ s0 <- s0 + s27
    vstr s0, [r7] @ Store s0 back to C[i][j]
    add r5, r5, #1 @ r5 <- r5 + 1 */
    b Loop_j /* next iteration of loop j */
    End_loop_j: /* Here ends loop j */
    add r4, r4, #1 @ r4 <- r4 + 1 */
    b Loop_i /* next iteration of loop i */
End_loop_i: /* Here ends loop i */
/* Set the LEN field of FPSCR back to 1 (value 0) */
mov r5, #0b011 @ r5 <- 3
mvn r5, r5, LSL #16 @ r5 <- ~ (r5 << 16)
fmrx r4, fpscr @ r4 <- fpscr
and r4, r4, r5 @ r4 <- r4 & r5
fmxr fpscr, r4 @ fpscr <- r4
vpop {s24-s27} /* Restore floating registers */
vpop {s16-s19}
pop {r4, r5, r6, r7, r8, lr} /* Restore integer registers */
bx lr /* Leave function */
```

With this approach we can entirely remove the k loop, as we do 4 operations at once. Note that we have to modify the fpscr so the field len is set to 4 (and restore it back to 1 when leaving the function).

C. 5 Fill the registers

In the previous version we were not exploiting all the registers of VFPv2. Each row takes 4 registers and so does each column, so we end up using only 8 registers plus 4 for the result and one in the bank 0 for the summation. We got rid the k loop to process $C[i][j]$ at once. What if we processed $C[i][j]$ and $C[i][j+1]$ at the same time? That way we can fill all the 8 registers in each bank.

```
naive_vectorial_matmul_2_4\times4:
    /* r0 address of A
        r1 address of B
        r2 address of C
    */
    push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
```

```
vpush {s16-s31} /* Floating point registers starting
    from s16 must be preserved */
/* First zero 16 single floating point */
/* In IEEE 754, all bits cleared means 0 */
mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:
    str r6, [r4], +#4 /* *r4 <- r6 then r4 <- r4 + 4 */
Loop_init_test:
    subs r5, r5, #1
    bge Loop_init
/* Set the LEN field of FPSCR to be 4 (value 3)
mov r5, #0b011 @ r5 <- 3
mov r5, r5, LSL #16 @ r5 <- r5 << 16
fmrx r4, fpscr @ r4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5
fmxr fpscr, r4 @ fpscr <- r4
/* We will use
    r4 as i
    r5 as j
*/
mov r4, #0 @ r4 <- 0
Loop_i: /* loop header of i */
    cmp r4, #4 /* if r4 == 4 goto end of the loop i */
    beq End_loop_i
    mov r5, #0 @ r5 <- 0
    Loop_j: /* loop header of j */
        cmp r5, #4 /* if r5 == 4 goto end of the loop j */
        beq End_loop_j
        /* Compute the address of C[i][j] and load it into s0 */
        /* Address of C[i][j] is C + 4*(4 * i + j) */
        mov r7, r5 @ r7 <- r5 = j
        adds r7, r7, r4, LSL #2 @ r7 <- r7 + (r4 << 2) = j + i * 4
        adds r7, r2, r7, LSL #2 @ r7 <- r2 + (r7 << 2) = C + 4*(j+i*4)
        /* Compute the address of a[i] [0] */
        mov r8, r4, LSL #2
        adds r8, r0, r8, LSL #2
        /* Load {s8,s9,s10,s11} <- {a[i][0],a[i][1],a[i][2],a[i][3]} */
        vldmia r8, {s8-s11}
```

```
    /* Compute the address of \(\mathrm{b}[0][\mathrm{j}]\) */
    mov r8, r5 © r8 <- r5 = j
    adds r8, r1, r8, LSL \#2 @ r8 <- r1 + (r8 << 2) = b + 4* (j)
    vldr s16, [r8] @ s16 <- *r8 = b[0] [j]
    vldr s17, [r8, \#16] @ s17 <- * (r8 + 16) = b[1][j]
    vldr s18, [r8, \#32] © s18 <- * \((r 8+32)=b[2][j]\)
    vldr s19, [r8, \#48] @ s19 <- * \((\mathrm{r} 8+48)=\mathrm{b}[3][j]\)
    /* Compute the address of \(\mathrm{b}[0][\mathrm{j}+1]\) */
    add r8, r5, \#1 @ r8 <- r5 + \(1=j+1\)
    adds r8, r1, r8, LSL \#2 @ r8 <- r1 + (r8 << 2) = b + 4* (j + 1)
    vldr s20, [r8] © s20 <- *r8 = b[0][j + 1]
    vldr s21, [r8, \#16] @ s21 \(<-*(\mathrm{r} 8+16)=\mathrm{b}[1][\mathrm{j}+1]\)
    vldr s22, [r8, \#32] @ s22 <- * \(\mathrm{r} 8+32\) ) \(=\mathrm{b}[2][\mathrm{j}+1]\)
    vldr s23, [r8, \#48] © s23 <- * \((r 8+48)=b[3][j+1]\)
    /* \{s24, s25,s26,s27\} <- \{s8,s9,s10,s11\} * \{s16,s17,s18,s19\} */
    vmul.f32 s24, s8, s16
    vmov.f32 s0, s24 @ s0 <- s24
    vadd.f32 s0, s0, s25 @ s0 <- s0 + s25
    vadd.f32 s0, s0, s26 @ s0 <- s0 + s26
    vadd.f32 s0, s0, s27 @ s0 <- s0 + s27
    /* \{s28,s29, s30,s31\} <- \{s8,s9,s10,s11\} * \{s20,s21,s22,s23\} */
    vmul.f32 s28, s8, s20
    vmov.f32 s1, s28 @ s1 <- s28
    vadd.f32 s1, s1, s29 @ s1 <- s1 + s29
    vadd.f32 s1, s1, s30 @ s1 <- s1 + s30
    vadd.f32 s1, s1, s31 @ s1 <- s1 + s31
    /* \(\{C[i][j], C[i][j+1]\}<-\{s 0, s 1\} * /\)
    vstmia r7, \{s0-s1\}
    add r5, r5, \#2 @ r5 <- r5 + 2
    b Loop_j /* next iteration of loop j */
End_loop_j: /* Here ends loop j */
add r4, r4, \#1 @ r4 <- r4 + 1
b Loop_i /* next iteration of loop i */
End_loop_i: /* Here ends loop i */
/* Set the LEN field of FPSCR back to 1 (value 0) */
```

```
mov r5, #0b011 @ r5 <- 3
mvn r5, r5, LSL #16 @ r5 <- ~ (r5 << 16)
fmrx r4, fpscr @ r4 <- fpscr
and r4, r4, r5 @ r4 <- r4 & r5
fmxr fpscr, r4 @ fpscr <- r4
vpop {s16-s31} /* Restore preserved floating registers */
pop {r4, r5, r6, r7, r8, lr} /* Restore integer registers */
bx lr /* Leave function */
```

Note that because we now process j and $j+1$ together, $r 5(=j)$ is now increased by 2 at the end of the loop. This is usually known as loop unrolling and it is always legal to do. We do more than one iteration of the original loop in the unrolled loop. The number of iterations of the original loop we do in the unrolled loop is the unroll factor. In this case since the number of iterations (4) is perfectly divisible by the unrolling factor (2) we do not need an extra loop for any remainder iterations (the remainder loop has one less iteration than the value of the unrolling factor).

As you can see, the accesses to $b[k][j]$ and $b[k][j+1]$ are starting to become tedious. Maybe we should make more changes to the matrix multiply algorithm.

C. 6 Reorder the accesses

Is there a way we can mitigate the strided accesses to the matrix B ? Yes, there is one, we only have to permute the ordering of the loop nesting variables i, j, k into the order k, i, j. Now you may be wondering if this is legal. Well, checking for the legality of these things is beyond the scope of this book so you will have to trust me here. Such permutation is fine. What does this mean? Well, it means that our algorithm will now look like this in C:

```
float A[N] [N];
float B[M] [N];
// Result
float C[N][N];
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        C[i][j] = 0;
for (int k = 0; k < N; k++)
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            C[i][j] += A[i][k] * B[k][j];
```

This may not seem very useful, but note that, since now k is in the outermost loop, it is easier to use vectorial instructions.

```
for (int k = 0; k < N; k++)
    for (int i = 0; i < N; i++)
    {
        C[i][0] += A[i][k] * B[k][0];
        C[i][1] += A[i][k] * B[k][1];
            C[i][2] += A[i][k] * B[k][2];
            C[i][3] += A[i][k] * B[k][3];
        }
```

If you remember Chapter 14, VFPv2 instructions have a mixed mode when the Rsource2 register is in bank 0. This case makes a perfect match: we can load C[i] [0..3] and $B[k][0.3]$ with a load multiple and then load $A[i][k]$ into a register in bank 0 . Then we can make multiply $\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][0 \ldots 3]$ and add the result to $\mathrm{C}[\mathrm{i}][0 \ldots 3]$. As a bonus, the number of instructions is much smaller.

```
better_vectorial_matmul_4x4:
    /* r0 address of A
        r1 address of B
        r2 address of C
    */
    push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
    /* Floating point registers starting from s16 must be preserved */
    vpush {s16-s19}
    vpush {s24-s27}
    /* First zero 16 single floating point */
    /* In IEEE 754, all bits cleared means 0 */
    mov r4, r2
    mov r5, #16
    mov r6, #0
    b Loop_init_test
    Loop_init:
        str r6, [r4], +#4 @ *r4 <- r6 then r4 <- r4 + 4
    Loop_init_test:
        subs r5, r5, #1
        bge Loop_init
    /* Set the LEN field of FPSCR to be 4 (value 3) */
    mov r5, #0b011 @ r5 <- 3
    mov r5, r5, LSL #16 @ r5 <- r5 << 16
    fmrx r4, fpscr @ r4 <- fpscr
    orr r4, r4, r5 @ r4 <- r4 | r5
    fmxr fpscr, r4 @ fpscr <- r4
```

```
/* We will use
        r4 as k
        r5 as i
*/
mov r4, #0 @ r4 <- 0
Loop_k: /* loop header of k */
    cmp r4, #4 /* if r4 == 4 goto end of the loop k */
    beq End_loop_k
    mov r5, #0 @ r5 <- 0
    Loop_i: /* loop header of i */
        cmp r5, #4 /* if r5 == 4 goto end of the loop i */
        beq End_loop_i
        /* Compute the address of C[i][0] */
        /* Address of C[i][0] is C + 4*(4 * i) */
        add r7, r2, r5, LSL #4 @ r7 <- r2 + (r5 << 4) = c + 4*4*i
        /* Load {s8,s9,s10,s11} <- {c[i][0],c[i][1],c[i][2],c[i][3]} */
        vldmia r7, {s8-s11}
        /* Compute the address of A[i][k] = A + 4*(4*i + k) */
        add r8, r4, r5, LSL #2 @ r8 <- r4 + r5 << 2 = k + 4*i
        add r8, r0, r8, LSL #2 @ r8 <- r0 + r8 << 2 = a + 4*(k + 4*i)
        vldr s0, [r8] @ Load s0 <- a[i][k]
        /* Compute the address of B[k][0] */
        /* Address of B[k][0] is B + 4*(4*k) */
        add r8, r1, r4, LSL #4 @ r8 <- r1 + r4 << 4 = b + 4*(4*k)
        /* Load {s16,s17,s18,s19}<-{b[k][0],b[k][1],b[k][2],b[k][3]} */
        vldmia r8, {s16-s19}
        /* {s24,s25,s26,s27}<- {s16,s17,s18,s19} * {s0,s0,s0,s0} */
        vmul.f32 s24, s16, s0
        /* {s8,s9,s10,s11} <- {s8,s9,s10,s11} + {s24,s25,s26,s7} */
        vadd.f32 s8, s8, s24
        /* Store {c[i][0],c[i][1],c[i][2],c[i][3]} <- {s8,s9,s10,s11} */
        vstmia r7, {s8-s11}
        add r5, r5, #1 @ r5 <- r5 + 1; i.e., i = i + 1
        b Loop_i /* next iteration of loop i */
        End_loop_i: /* Here ends loop i */
        add r4, r4, #1
        b Loop_k
            /* next iteration of loop k */
```

```
End_loop_k: /* Here ends loop k */
/* Set the LEN field of FPSCR back to 1 (value 0) */
mov r5, #0b011 @ r5 <- 3
mvn r5, r5, LSL #16 @ r5 <- ~ (r5 << 16)
fmrx r4, fpscr @ r4 <- fpscr
and r4, r4, r5 @ r4 <- r4 & r5
fmxr fpscr, r4 @ fpscr <- r4
vpop {s24-s27} /* Restore preserved floating registers */
vpop {s16-s19}
pop {r4, r5, r6, r7, r8, lr} /* Restore integer registers */
bx lr /* Leave function */
```

Since adding after a multiplication is a frequent sequence of operations, we can replace the sequence

```
vmul.f32 s24, s16, s0
    /* {s24,s25,s26,s27} <- {s16,s17,s18,s19} * {s0,s0,s0,s0} */
vadd.f32 s8, s8, s24
    /* {s8,s9,s10,s11} <- {s8,s9,s10,s11} + {s24,s25,s26,s27} */
```

with the single instruction vmla (multiply and add).
vmla.f32 s8, s16, s0
/* \{s8,s9,s10,s11\}<-\{s8,s9,s10,s11\}+(\{s16,s17,s18,s19\}*\{s0,s0,s0,s0\}) */
Now we can also unroll the i loop, again with an unrolling factor of 2 . This would give us our best version.

```
best_vectorial_matmul_4x4:
    /* r0 address of A
        r1 address of B
        r2 address of C
    */
    push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
    vpush {s16-s19} /* Floating point registers starting
                        from s16 must be preserved */
```

 /* First zero 16 single floating point */
 /* In IEEE 754, all bits cleared means 0 */
 mov r4, r2
 mov r5, \#16
 mov r6, \#0
 b Loop_init_test
 Loop_init:
    ```
    str r6, [r4], +#4
    @ *r4 <- r6 then r4 <- r4 + 4 */
Loop_init_test:
    subs r5, r5, #1
    bge Loop_init
/* Set the LEN field of FPSCR to be 4 (value 3)
mov r5, #0b011 @ r5 <- 3
mov r5, r5, LSL #16
    @ r5 <- r5 << 16
fmrx r4, fpscr
    @ r4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5
fmxr fpscr, r4 @ fpscr <- r4
/* We will use
                        r4 as k
        r5 as i
*/
mov r4, #0
    @ r4 <- 0
Loop_k:
/* loop header of k */
    cmp r4, #4 /* if r4 == 4 goto end of k loop */
    beq End_loop_k
    mov r5, #0
    Loop_i:
/* loop header of i */
        cmp r5, #4
/* if r5 == 4 goto end of i loop */
        beq End_loop_i
        /* Compute the address of C[i][0] */
        /* Address of C[i][0] is C + 4*(4 * i) */
        add r7, r2, r5, LSL #4 @ r7 <- r2 + (r5 << 4) = c + 4*4*i
        /* Load {s8,s9,s10,s11,s12,s13,s14,s15}
            <- {c[i][0], c[i][1], c[i][2], c[i][3],
                        c[i+1][0], c[i+1][1], c[i+1][2], c[i+1][3]} */
        vldmia r7, {s8-s15}
        /* Compute the address of A [i][k] = A + 4*(4*i + k) */
        add r8, r4, r5, LSL #2 /* r8 <- r4 + r5 << 2 = k + 4*i */
        add r8, r0, r8, LSL #2 /* r8 <- r0 + r8 << 2 = a+4*(k+4*i) */
        vldr s0, [r8] /* Load s0 <- a[i][k] */
        vldr s1, [r8, #16] /* Load s1 <- a[i+1][k] */
        /* Compute the address of B[k][0] */
        /* Address of B[k][0] is B + 4*(4*k) */
        add r8, r1, r4, LSL #4 /* r8 <- r1 + r4<< 4 = b + 4*(4*k) */
        /* Load {s16,s17,s18,s19}<-{b[k][0],b[k][1],b[k][2],b[k][3]} */
        vldmia r8, {s16-s19}
```

```
    /* {s8,s9,s10,s11} <-
    {s8,s9,s10,s11} + ({s16,s17,s18,s19} * {s0,s0,s0,s0}) */
    vmla.f32 s8, s16, s0
    /* {s12,s13,s14,s15} <-
    {s12,s13,s14,s15} + ({s16,s17,s18,s19} * {s1,s1,s1,s1}) */
    vmla.f32 s12, s16, s1
    /* Store {c[i][0], c[i][1], c[i][2], c[i][3],
        c[i+1][0], c[i+1][1], c[i+1][2]}, c[i+1][3] }
        <- {s8,s9,s10,s11,s12,s13,s14,s15} */
    vstmia r7, {s8-s15}
    add r5, r5, #2 /* r5 <- r5 + 2; i.e., i = i + 2 */
    b Loop_i /* next iteration of loop i */
End_loop_i: /* Here ends loop i */
add r4, r4, #1 /* r4 <- r4 + 1; i.e., k = k + 1 */
b Loop_k /* next iteration of loop k */
End_loop_k: /* Here ends loop k */
/* Set the LEN field of FPSCR back to 1 (value 0)
mov r5, #0b011 @ r5 <- 3
mvn r5, r5, LSL #16 @ r5 <- ~(r5 << 16)
fmrx r4, fpscr @ r4 <- fpscr
and r4, r4, r5 @ r4 <- r4 & r5
fmxr fpscr, r4 @ fpscr <- r4
vpop {s16-s19} /* Restore preserved floating registers */
pop {r4, r5, r6, r7, r8, lr} /* Restore integer registers */
bx lr /* Leave function */
```


C. 7 Comparing versions

Out of curiosity I tested the versions, to see which one was faster.
The benchmark consists of repeatedly calling the multiplication matrix function 221 times (actually 221-1 because of a typo, see the code) in order to magnify differences. While the input should be randomized as well for a better benchmark, the benchmark more or less models contexts where a matrix multiplication is performed many times (for instance in graphics).

This is the skeleton of the benchmark.
main:
push $\{r 4,1 r\}$

```
ldr r0, addr_mat_A /* r0 <- a */
ldr r1, addr_mat_B /* r1 <- b */
ldr r2, addr_mat_C /* r2 <- c */
mov r4, #1
mov r4, r4, LSL #21
Main_loop_test:
    /* Insert here the matmul you want to test */
    bl <<tested-matmul-routine>>
    subs r4, r4, #1
    bne Main_loop_test /* I should have written 'bge' here, but I
                                    cannot change it without having to run
                                    the benchmarks again :) */
mov r0, #0
pop {r4, lr}
bx lr
```

Here are the results. The one we named the best turned to actually deserve that name.

Timing Comparisons

| Version | Time (seconds) |
| :--- | :--- |
| naive_matmul_4×4 | 6.41 |
| naive_vectorial_matmul_4×4 | 3.51 |
| naive_vectorial_matmul_2_4 $\times 4$ | 2.87 |
| better_vectorial_matmul_4×4 | 2.59 |
| best_vectorial_matmul_4×4 | 1.51 |

Figure C-2

D Subword Data

We already know that the ARM processor in our Raspberry Pi 2 has a 32-bit architecture: general purpose registers are 32-bits wide and addresses in memory are 32-bit numbers. The natural integer size for an architecture is usually called a word and in our ARM is obviously a 32 -bit integer. Sometimes, though, we need to deal with subword data: integers of size smaller than 32 bits.

In this Appendix subword data will refer either to a byte or to a halfword. A byte is an integer of 8 -bits and a halfword is an integer of 16 -bits. Thus, a halfword occupies 2 bytes and a word 4 bytes.

To define storage for a byte in the data section we have to use .byte. For a halfword the syntax is .hword.

```
.align 4
one_byte: .byte 205
/* This number in binary is 11001101 */
.align 4
one_halfword: .hword 42445
/* This number in binary is 1010010111001101 */
```

Note that, as usual, we are aligning data to 4 bytes. Later on we will see that for subword data alignment restrictions are slightly more relaxed.

D. 1 Loading

Before we start operating on a subword integer we need to get it somewhere. If we are not going to load/store it from/to memory, we may simply use a register. We may have to check that we do not overflow the range of the subword, but that's all.

But if the data is in memory then it is important to load it properly since we do not want to read more data than actually needed. Recall that an address actually identifies a single byte of the memory: it is not possible to address anything smaller than a byte. Depending on the width of the load/store, the address will load/store 1 byte, 2 bytes or 4 bytes. A regular ldr loads a word, so we need some other instruction.

The ARM processor provides the instructions ldrb and ldrh to load a byte and a halfword respectively. The destination is a general purpose register, of 32 -bits, so this instruction must extend the value from 8 or 16 bits to 32 bits. Both ldrb and ldrh perform zero-extension, which means that all the extra bits, not loaded, will be set to zero.

```
.text
.globl main
main:
    push {r4, lr}
    ldr r0, =one_byte @ r0 <- &one_byte
    ldrb r0, [r0] @ r0 <- *{byte}r0
    ldr r1, =one_halfword @ r1 <- &one_halfword
    ldrh r1, [r1] @ r1 <- *{half}r1
    pop {r4, lr}
    mov r0, #0
    bx lr
```

In the example above note the difference between the ldr and the subsequent ldrb/ldrh. The ldr instruction is needed to load an address into the register. Addresses in our ARM processor are 32-bit integers so a regular ldr must be used here. Then, once we have the address in the register we use ldrb or ldrh to load the byte or the halfword. As stated above, the destination register is 32 -bits so the loaded integer is zero-extended. The following table shows what happens with zero-extension.

| Effect of subword loads with ldrb and ldrh. | | | |
| :---: | :---: | :---: | :---: |
| | Content in memory (bytes) | Loaded in register (32-bit) | |
| | addr | addr+1 | |
| ldrb | 11001101 | | 00000000000000000000000011001101 |
| ldrh | 11001101 | 10100101 | 00000000000000001010010111001101 |

Figure SubwordData-1

The ARM in the Raspberry Pi has the little endian architecture, that means that bytes in memory are laid in memory (from lower to higher addresses) starting from the least significant byte to the most significant byte. Load and store instructions preserve this
ordering. That fact is usually not important unless viewing the memory as a sequence of bytes. That is the reason why in the table above 11001101 always appears in the first column even if the number 42445 is 1010010111001101 in binary.

Now loading using ldrb and ldrh is fine as long as we only use natural numbers. Integral numbers include negative numbers and are commonly represented using two's complement. If we zero-extend a negative number, the sign bit (the most significant bit of a two's complement) will not be propagated and we will end with an unrelated positive number. When loading two's complement subword integers we need to perform sign-extension using instructions ldrsb and ldrsh.

```
ldr r0, addr_of_one_byte @ r0 <- &one_byte
ldrsb r0, [r0] @ r0 <- *{signed byte}r0
ldr r1, addr_of_one_halfword @ r1 <- &one_halfword
ldrsh r1, [r1] @ r1 <- *{signed half}r1
```

Note that sign-extension is the same as zero-extension when the sign bit is zero, as it happens in the two last rows of the following table that shows the effect of ldrsb and ldrsh.

| Effect of subword loads with ldrsb and ldrsh. | | | |
| :---: | :---: | :---: | :---: |
| | Content in memory (bytes) | Loaded in register (32-bit) | |
| | addr | addr+1 | |
| Idrsb | 11001101 | | 11111111111111111111111111001101 |
| Idrsh | 11001101 | 10100101 | 11111111111111111010010111001101 |
| Idrsb | 01001101 | | 00000000000000000000000001001101 |
| Idrsh | 11001101 | 00100101 | 00000000000000000010010111001101 |
| | | | |

Figure SubwordData-2

It is very important not to mix both instructions when loading subword data. When loading natural numbers, lrb and lrh are the correct choice. If the number is an integer that could be negative always use ldrsb and ldrsh. The following table summarizes what happens when you mix interpretations and the different load instructions.

Patterns of bits interpreted as (natural) binary or two's complement.

| | | Interpretation of bits | |
| :---: | :---: | :---: | :---: |
| Width | 11001101 | Bits | 205 |
| 8-bit | 00000000000000000000000011001101 | 205 | -51 |
| 32-bit after ldrb | Two's complement | | |
| 32-bit after ldrsb | 111111111111111111111111001101 | 4294967245 | -51 |
| 16-bit | 1010010111001101 | 42445 | -23091 |
| 32-bit after ldrh | 00000000000000001010010111001101 | 42445 | 42445 |
| 32-bit after ldrsh | 11111111111111111010010111001101 | 4294944205 | -23091 |

Figure SubwordData-3

D. 2 Storing

While a load requires us to take care of whether the loaded subword is a binary or a two's complement encoded number, a store instruction does not require any such consideration. The reason is that the corresponding strb and strh instructions will simply take the least significant 8 or 16 bits of the register and store them in memory.

```
ldr r1, addr_of_one_byte @ r0 <- &one_byte
ldrsb r0, [r1] @ r0 <- *{signed byte}r1
strb r0, [r1] @ *{byte}r1 <- r0
ldr r0, addr_of_one_halfword
ldrsh r1, [r0] @ r1 <- *{signed half}r0
strh r1, [r0] @ *{half}r0 <- r1
```


D. 3 Alignment restrictions

When loading or storing a 32-bit integer from/to memory, the address must be 4 byte aligned. That means that the two least significant bits of the address must be 0 . Such restriction is relaxed if the memory operation (load or store) is a subword one. For halfwords the address must be 2 byte aligned. For bytes, no restriction applies. That way we can reinterpret words and halfwords as either halfwords or bytes if we want.

Consider the following example, where we traverse a single word reinterpreting its bytes and halfwords (and finally the word itself).

01 .data
02
03 .align 4
04 a_word: .word 0x11223344
05
06 .align 4
07 message_bytes: .asciz "byte \#\%d is 0x\%x\n"
08 message_halfwords: .asciz "halfword \#\%d is 0x\%x\n"
09 message_words: .asciz "word \#\%d is $0 x \% x \backslash n$ "
10
11 .text
12
13 .globl main
14 main:
15 push $\{r 4, r 5, r 6, \operatorname{lr}\} / *$ keep callee saved registers */
16
17
push $\{r 4, r 5, r 6, \operatorname{lr}\} / *$ keep callee saved registers */
ldr r4, =a_word /* r4 <- \&a_word */
mov r5, \#0 $/ *$ r5 <- 0 */
b check_loop_bytes /* branch to check_loop_bytes */
loop_bytes:
/* prepare call to printf */
ldr r0, =message_bytes
/* r0 <- \&message_bytes
first parameter of printf */
mov r1, r5 $/ *$ r1 <- r5
second parameter of printf */
ldrb r2, [r4, r5] /* r2 <- *\{byte\} (r4 + r5)
third parameter of printf */
bl printf $/ *$ call printf */
add r5, r5, \#1 /* r5 <- r5 + 1 */
check_loop_bytes:
cmp r5, \#4 /* compute r5 - 4 and update cpsr */
bne loop_bytes $/ *$ if r5 != 4 branch to loop_bytes */
mov r5, \#0 $/ *$ r5 <- 0 */
b check_loop_halfwords /* branch to check_loop_halfwords */
loop_halfwords:
/* prepare call to printf */
ldr r0, =message_halfwords
/* r0 <- \&message_halfwords
first parameter of printf */

45

```
    mov r1, r5 /* r1 <- r5
    second parameter of printf */
    mov r6, r5, LSL #1 /* r6 <- r5 * 2 */
    ldrh r2, [r4, r6] /* r2 <- *{half}(r4 + r6)
        this is r2 <- *{half}(r4 + r5 * 2)
        third parameter of printf */
    bl printf /* call printf */
    add r5, r5, #1 /* r5 <- r5 + 1 */
check_loop_halfwords:
    cmp r5, #2 /* compute r5 - 2 and update cpsr */
    bne loop_halfwords /* if r5 != 2 branch to loop_halfwords */
    /* prepare call to printf */
    ldr r0, =message_words /* r0 <- &message_words
        first parameter of printf */
    mov r1, #0 /* r1 <- 0
        second parameter of printf */
        ldr r2, [r4] /* r1 <- *r4
        third parameter of printf */
        bl printf /* call printf */
    pop {r4, r5, r6, lr} /* restore callee saved registers */
    mov r0, #0 /* set error code */
    bx lr /* return to system */
```

Our word is the number 0 x 11223344 (this is $287454020_{\text {DEC }}$). We load the address of the word, line 17, as usual with a ldr and then we perform different sized loads. The first loop, lines 19 to 35 , loads each byte and prints it. Note that the ldrb, line 29, just adds the current byte (in r5) to the address of the word (in r4). We do not have to multiply r5 by anything. In fact ldrb and ldrh, unlike ldr, do not allow a shift operand of the form LSL \#x. You can see how to dodge this restriction in the loop that prints halfwords, lines 37 to 55 . In the instruction ldrh, line 48 , we use r 6 that is just $r 4+r 5 * 2$, computed in line 47 . Since the original word was 4 byte aligned, we can read its two halfwords because they will be 2-byte aligned. It would be an error to attempt to load a halfword using the address of the byte 1 ; only the halfwords starting at bytes 0 and 2 can be loaded as a halfword.

This is the output of the program

```
$ ./reinterpret
byte #0 is 0x44
byte #1 is 0x33
byte #2 is 0x22
byte #3 is 0x11
halfword #0 is 0x3344
halfword #1 is 0x1122
word #0 is 0x11223344
```

As we stated above, the ARM processor in the Raspberry Pi has the little endian architecture, so for integers of more than one byte, they are laid out (from lower addresses to higher addresses) starting from the less significant bytes. That is why the first byte is $0 x 44$ and not $0 x 11$. Similarly for halfwords, the first halfword will be 0x3344 instead of 0×1122.

E GPIO

The Raspberry Pi has easily accessible General Purpose Input/Output (GPIO) pins available so engineering students can test out actual hardware using the computer. As usual, there is plenty of information on the web to help users take advantage of these pins. We will only discuss a few interesting projects.

E. 1 Onboard led

Before getting involved with wires and breadboards, let's put one of the on-board leds (Light Emitting Diodes) under our control. There are a few on the Raspberry Pi board but we will only turn on and off the green led beside the red power diode. It indicates activity in the SD card.

One important safety feature of the Raspberry Pi is that it will not allow anyone except the superuser to do anything with the leds or the GPIO pins. Thus, in order to demonstrate making the light blink, we must first become the superuser. Generally we become superuser to execute a single command by prefixing it by sudo and become the superuser for the future by the command su. In our case, to become the superuser and, in fact, become the root user, we give the command
sudo su
Note that the prompt changes from

```
pi@raspberrypi: ~/code $
```

to
root@raspberrypi:home/pi/code\#
(since we were and still are in the code subdirectory). Now our name is root and we are the superuser and can access anything.

Anyone can look at the following file that belongs to root:
cat /sys/class/leds/led0/trigger
and, in the long list of information we see, in particular, [$\mathbf{m m c} 0$]. Now, as root we may give the command:
echo none > /sys/class/leds/led0/trigger/
and if we look again, the square brackets are no longer around the mmc0. We can now change the brightness of that led. The following shell script OnOffACT.sh will turn it on and off. Note that we have included lots of unnecessary stuff in it to indicate ways in which shell scripts can be used.

```
echo OnOffACT.sh
echo none > sys/class/leds/led0/trigger
echo "\033[31m"
echo "\033[7m Starting to blink ACT 5 times!"
n=5
for n in 5 4 3 2 1
do
    echo $n
    echo 1 > /sys/class/leds/led0/brightness
    sleep 1
    echo 0 > /sys/class/leds/led0/brightness
    sleep 1
done
echo "\033[7m Done blinking ACT!"
echo "\033[0m"
echo mmc0 > /sys/class/leds/led0/trigger
```

Of course the file OnOffact.sh will not run unless we give it the correct permission so we change its mode to allow All users to eXecute the file (but actually only root as superuser can successfully change the values in that file and hence have it work).
chmod a+x OnOffACT.sh
and then root can run it.
Try the following command and watch the green light.
./OnOffACT.sh
Notice that we put the trigger back when done because we want to leave everything the way we found it. The extra echos are just fooling around showing how one can change background, foreground, bold face, blinking, colors, and other effects in shell scripts. If you are interested, look up some tutorials on the web.

By the way, to go back to being your usual self (named pi) instead of root and no longer being the superuser, you can issue the command

```
root@raspberrypi:/home/pi/code# su pi
pi@raspberrypi:~/code $
```

and be back to your usual prompt.

E. 2 wiringPi

Gordon Henderson has made a library of GPIO functions available through wiringPi.com. There can be found instructions on how to download and install it plus additional documentation. It is designed for the BCM2815 processor in our Raspberry Pi.

E. 3 GPIO pins

Here is a diagram (taken from the web, of course) of the GPIO pins on the Raspberry Pi 3

E. 4 Light an LED

There are many tutorials available to show how to light up an led. For example, see https://www.raspberrypi.org/magpi-issues/MagPi47.pdf

Projects

1. If your Raspberry Pi is Model 2 you can also control the red power led through software (the Model 3 is wired differently and cannot be so controlled). If you look at /sys/class/leds, you will find both the led0 and a led1 on a Model 2. Change the code in OnOff ACT. sh to a new OnOffPWR.sh and test it (as superuser, of course). Be sure to add a line to turn the red power led back on in this case.

Index

AAPCS, 51, 73
Activation record, 134
Address, 9
Addressing modes, 9, 39
ARM, 1
ARM ARM, 153
ARM Instruction Set, 153
Array, 43
array01.s, 44
as, 1
as parameters, 5
Batch file, 3
Binary search, 61
BinarySearch.s, 62
branch01.s, 26
Breakpoint, 34
Breakpoints, 23
Byte, 185
C compiler, 2
Collatz, 35, 37, 40, 90
Collatz.s, 35
collatz02.s, 90
Comments, 3, 5, 15
Compare, 27
Compare negative, 29
compare01.s, 28
Condition codes, 26, 154
mnemonics, 28
Coprocessor, 105
cpsr, 26, 154
create.s, 128
Current Program Status Register, 26
Debugging, 19, 69

Directives, 3
asciz, 17, 49
balign, 11
data, 11
float, 168
func, 4
global, 3
skip, 44
text, 11
word, 11
Disassemble, 20
double_array.s, 123
Dynamic activation, 72
Dynamic programming, 82
Embedded systems, 39
Error code, 2, 4, 33
Exceptions, 154
factorial.s, 81
factorial01.s, 75, 78
Fast interrupt, 155
fib.s, 82
first.s, 2
first_pointer.s, 113
Flags, 26
fp, 134
fpscr, 106
len, 106
stride, 106
Frame pointer, 134
Functional Programming, 59
gdb, 19
GNU assembler, 1

GNU Debugger, 19
GPIO pins, 193
Halfword, 185
hello01.s, 53
Henderson, Gordon, 195
Hilbert matrices, 102
IEEE-754 standard, 97
Immediate value, 8
Indentation, 4
Indexing modes, 39, 45
Non-updating, 45
Updating, 46
inline assembler, 143
Insertion sort, 64
Instruction format, 4
Instructions
add, 8
and, 36
b, 26
Bitwise, 163
bl, 52
blx, 52
bx, 4
cmn, 29
cmp, 27
ldm, 77
ldr, 9
mov, 4
mul, 74
stm, 77
str, 9
svc, 5, 127
swi, 5, 127
teq, 94
tst, 94
vcvt, 110
vldr, 108
vmov, 109
vmrs, 111
vmsr, 111
vstr, 108
Integers, 159

One's Complement, 160
Signed-Magnitude, 159
Two's Complement, 161
Interrupts, 154
Software, 127
isort.s, 64
Key, 61
Knuth, Donald, 67
Labels, 10
ld, 5
leds, 193
line numbers, 2
Load, 9
load01.s, 11
Local memory, 73
loop01.s, 32
loop02.s, 37
lr, 51
main, 3
Makefile, 3
Memory, 9
Millikin, Kevin, 37
Mode, 106, 154
scalar, 106
Scalar expanded, 107
Vectorial, 107
numericalLabels.s, 59
OnOffACT.sh, 194
Overflow, 162
Padding, 44
PATH, 6
Patterson and Hennessy, 155
pc, 25
Pipeline, 88
Pointers, 113
Post-indexing, 47
Pre-indexing, 47, 48
Predication, 87
printf01.s, 55
printf02.s, 57
privileged mode, 154
wiringPi, 195
Program counter, 25
program.s, 5
QEMU, vii, 19
r15, 25
rand.s, 67
Raspbian, 1
Recursion, 71
Reduced Instruction Set Computer, 17
Registers, 7, 106
Relocation, 13, 16
RISC, 17
root, 193
Rotations, 42
Shell scripts, 194
Shift operations, 40
Shifted operand, 40
sp, 51
spsr, 154
squares.s, 140
Stack, 72
Store, 9
store01.s, 14
store02.s, 16, 19
Strings, 49
Structure, 43
Structured programming, 31
Structures, 49
su, 193
Subword data, 185
sudo, 193
Suffix s, 93
sum01.s, 7
sum02.s, 8
Superuser, 193
Tail-recursion, 80
Thumb, 147
thumb-first.s, 148, 151
Two's complement, 7, 161
UAL, 59

